G.S. Mandal's

MAHARASHTRA INSTITUTE OF TECHNOLOGY CHHATRAPATI SAMBHAJINAGAR (An Autonomous Institute)

Accredited with "Grade A" by NAAC

(Formerly Known as College of Applied Science)

Approved by All India Council for Technical Education (AICTE), New Delhi Permanently Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar DTE Code -2113

Ref: MIT/BTECH/ACAD/H&M/2024/o2

Date: 18-01-2024

Notice

Registration for Honor and Minor Scheme (Academic Year 2023-24 Part II)

All the students of Second Year B. Tech. (Autonomous) are hereby informed that, Institute provide the Honor and Minor Scheme for the meritorious students based on the CGPA score. The students can opt for enrollment in the scheme voluntarily. It is not mandatory. Few important points to be noted by students willing to enroll in this scheme are as follows:

- Eligibility: Applicant must have a minimum CGPA of 6.75 up to the second semester of • B. Tech. and forDSY Students CGPA of 6.75 or equivalent in Diploma.
- Student can either choose for Honor or Minor Program and not for both.
- The brief about this scheme as per the academic rules and regulations is attached in the Annexure-I. The list of Honor & Minor courses offered for the Academic Year 2023-24 Part II and the Program-wise applicability is given for your reference in Annexure-II.
- Students can download syllabus through link http://tinyurl.com/SYHMAllSyllabi2324 of these courses and advised to meticulously check the syllabus before registration.
- The honor/minor programme will be implemented if minimum 15 students enroll for the same. Students must do online registration for honor/minor on provided link or by scanning the QR Code as given below. The link for registration will be available from 19/01/2024 (Between 10.00 am 5.00 pm) only. Thereafter, the link will be closed.

ul Techna

MIT

Autonomous

http://tinyurl.com/SYHM2324PII

Dean Academics

Copy to:

- Aurangabad Dean (Examinations and Evaluations) for information and n.a. Line and
- Registrar/ Deans, for information and n.a.
- HODs for information and Circulation to students through class coordinators

NH-211, MIT Campus, Satara Village Road, Chhatrapati Sambhajinagar 431 010 (M.S.); India. Phone (Director): (0240) 2375111.(Office) 2375365,2375355: Fax:(0240)2376618 ,Email:director.mitt a mit.asia: Website:https://www.mit asia

Page 1 of 3

Maharashtra Institute of Technology,

Annexure-I: About Honors/Minors Scheme as per Academic rules and Regulations (AR 21)

Regulation 2019, Point 31 - Honors and Minors Certification Schemes

- a) Brighter students transiting to the 4th Semester shall be permitted for Honors and Minors certification scheme as an additional avenue for passionate learners. Students are entitled to enrol either for Honors or Minors or not for both simultaneously.
- b) A student shall opt for a certificate in Honors for Vertical/Specialization in his/her OWN Programme for Research orientation. He/she shall opt for Minors certificate in any OTHER Programme for Improving Employability.
- c) The Scheme shall start from 4th Semester of the UG Programme and the student shall have a minimum CGPA of 6.75 up to 2nd Semester without having any failed courses.
- d) The schemes shall also be open for Lateral Entry Students, with equivalent minimum CGPA of 6.75 in Diploma/ B.Sc.
- e) Every department shall offer 4 additional theory courses, two laboratories and one mini project with total of 20 credits for the respective Honors and Minors scheme.
- f) The Dean (Academics and Quality Assurance) shall invite preferences for Honors/Minors scheme from the second year eligible students on the day of Semester Credit Registration of the 4th semester. Students shall give preferential options for Honors scheme or Minors schemes.
- g) The Dean (Academics and Quality Assurance) shall notify a provisional allotment, followed by a final allotment list. Later, a student who received allotment shall register for a course belonging to the respective Honors/Minors scheme, one course per semester and shall acquire minimum additional 20 credits, if successfully completed.
- h) A student may voluntarily drop the scheme at any time. However, no certificate/Semester Grade Report shall be awarded for such a partial completion.
- i) Students shall have to earn a minimum "C" grade for each course in the scheme. The remedial assessment schemes such as Make-up examination shall NOT be applicable for Minors or Honors schemes. If a student fails/drops/withdraws from the Honors/Minor scheme at any stage, the additional credits earned through Honors/Minor courses shall not be converted into program credits (core/electives/lab/project etc.) and they will remain extra. If at any stage during the duration of the program, if the student is found indulged in any in disciplinary activity (against the Code of Conduct at MIT), he/she shall be terminated from the Honors/Minor scheme and no Honors/Minor certificate shall be awarded to him/her.
- j) The scores of these additional courses shall not be accounted towards CGPA calculations at the end of each semester. An additional Semester Grade Report shall indicate the additional courses learnt along with the grades. Successful completion of Honors/Minor scheme will not indicate any Class or Division. For the award of Medal to meritorious students, in case of a tie, student who has earned the Honors/Minor will be preferred.
- k) An attendance requirement for the course is same as per the regular courses.

(Academics)

Page 20f3

G.S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY **CHHATRAPATI SAMBHAJINAGAR** (An Autonomous Institute)

Accredited with "Grade A" by NAAC

(Formerly Known as College of Applied Science)

Approved by All India Council for Technical Education (AICTE). New Delhi

Permanently Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar

DTE Code -2113

Annexure-II

List of Honor / Minor Courses and the programme-wise-Applicability Matrix

- List of Honor/ Minor Courses:
 - 1. Robotics and Automation
 - 3. Internet of Things
 - 5. Surface Coating Technology

- 2. Cloud Computing
- 4. Data Science
- 6. Electrical Vehicles
- 7. Green Technology and Sustainable Engineering 8. Artificial Intelligence and ML

•	Programme	trix:			
		Robotics			

Host Department	Robotics and Automation	Cloud Computing	Internet of Things	Data Science	Surface Coating Technology	Electrical Vehicles	Green Tech and Sus. Engg	AI & ML
Agricultural Engg	Honor	Minor	Honor	Minor	Minor	Minor	Minor	Minor
Civil Engg	Minor	Minor	Minor	Minor	Minor	Minor	Honor	Minor
CSE	Minor	Honor	Minor	Minor	Minor	Minor	Minor	Honor
Electrical Engg	Minor	Minor	Honor	Minor	Minor	Honor	Minor	Minor
Electronics and Computer Engg	Minor	Minor	Honor	Honor	Minor	Minor	Minor	Minor
Mechanical Engg	Honor	Minor	Minor	Minor	Minor	Honor	Minor	Minor
Plastic and Polymer Engg	Honor	Minor	Minor	Minor	Honor	Minor	Minor	Minor
Artificial Int. and Data Science	Minor	Honor	Minor	Not Applica ble	Minor	Minor	Minor	Not Applica ble
Computer Science and Design	Minor	Honor	Minor	Minor	Minor	Minor	Minor	Honor

NH-211, MIT Campus, Satara Village Road, Chhatrapati Sambhajinagar 431 010 (M.S.); India. Phone (Director): (0240) 2375111,(Office) 2375365,2375355; Fax:(0240)2376618 ,Email:director.mitt@mit.asia: Website:https://www.mit.asia

(Ann (Aca))

Page 3 of 3

Maharashtra Institute of Technology (An Autonomous Institute)

Proposed Honours* in "Artificial Intelligence and Machine Learning" Major Disciplines in Bachelor in Computer Science and Engineering Bachelor in Computer Science and Design (With effect from A.Y. 2022-23)

	Honours* in Artificial Intelligence and Machine Learning															
	Course Code	Course	T Sche /	Teaching Examination Scheme and Marks cheme Hours / Week					Cre	dit Scl	ieme					
Year & Semester			Theory	Tutorial	Practical	Mid-Sem Exam-1	Mid-Sem Exam-1	Continuous Internal Evaluation	Teachers Assessment	End-Semester Exam	Term work	Practical	Total Marks	Theory / Tutorial	Practical	Total Credit
SY IV	EST901	Introduction to Artificial Intelligence and Machine Learning	04			15	15	10	10	50			100	04		04
	EST971	Laboratory			02						25		25		01	01
		Total	04	04 - 02 100			25		125	04	01	05				
		<u> </u>												Total	Credi	ts=05
TY V	EST 902	Introduction to Data Analytics	04			15	15		20	50			100	04		04
		Total	04	-	-			10	0				100	04		04
														Total	Credi	ts=04
TY VI	EST903	Artificial Neural Networks and DeepLearning	04			15	15	10	10	50			100	04		04
	EST972	Laboratory			02						25		25		01	01
		Total	04		02		1	10	0	1	25		125	04	01	05
	1	1	1	1	1	1						1	1	Total	Credi	ts=05
Final B.Tech. VII	EST904	Methods and Applications in Artificial Intelligence	04			15	15	10	10	50			100	04		04
		Total	04					100					100	04		04
	I	<u> </u>	1			1								Total	Credi	ts=04
Final B.Tech	EST973	Mini Project			04						25	25	50		02	02
VIII		Total			04						25	25	50		02	02
	l	1	I			1			1	1	<u> </u>			Total	Credi	ts=02
		Tota	al Cr	edit f	or Sei	mest	er IV	Y+V+V	I+VII	+VIII:	= 20					

	Maharashtra Institute of Technology								
	(An Autonomous Institute)								
		Department of	Comp	outer Science and Engi	neering				
Syllabus of S	Syllabus of S. Y. B. Tech. (Honours* in Artificial Intelligence & Machine Learning) Semester-IV								
Course Code:	Course Code: EST901 Credits: 4-0-0								
Course: Introc	luction	to Artificial	Mid	Semester Examination	n-I: 15 Marks				
Intelligence a	nd Mae	chine Learning	Mid	Semester Examination	n-II: 15 Marks				
Teaching Sch	eme:		Cont	tinuous Internal Evalua	ation:10 Marks				
Theory: 04 H	rs/wee	k	Teac	her Assessment: 10 M	larks				
Tutorial: 00 H	Ir/wee	k	End	Semester Examination	1: 50 Marks				
			End	Semester Examination	(Duration): 2 l	Hrs			
Prerequisite	Linea	r Algebra, Calculus							
	•	To review and stre	engthe	en important concepts	required for AI	& ML.			
Objectives	•	Introduce the cond	cept of	f Machine Learning al	gorithms.				
	Intro	duction to AI: Det	fine A	Artificial Intelligence,	Define AI tech	niques, Problem			
Unit-I	solvir	g using State Space	e Sear	ch, applying Heuristi	cs, Hill climbir	ng ,Search using			
	BFS,	DFS (08 Hrs)							
	Knov	vledge representati	on an	d Logic Programmin	ıg:				
Unit-II	Repre	senting Knowledge	as Ru	iles, Representing simp	ple facts in logi	c, Computable			
	functi	ons and predicates,	Proce	dural vs Declarative k	nowledge, Forv	vard vs			
	Backy	ward reasoning, Log	gic Pro	ogramming-Predicate I	Logic (08 Hrs)				
	Math	ematical foundatio	ons: M	Iatrix Theory and Stati	stics for Machi	ne Learning.			
Unit-III	Idea o	of Machine learning	from	data, Classification of	problem –Regi	ression and			
	Class	ification, Supervised	and	Unsupervised learning	.(08 Hrs)				
	Linea	r Regression: Mod	lel rep	resentation for single	variable, Single	variable Cost			
Unit-IV	Funct	ion, Gradient Decer	nt for]	Linear Regression, Gra	adient Decent in	n practice.			
	(08 H	Irs)							
	Logis	tic Regression: Cla	ssific	ation, Hypothesis Rep	resentation, Dec	cision Boundary,			
Unit-V	Cost f	function, Advanced	Optin	nization, Multi-classifi	ication (One vs	All), Problem of			
	Overf	itting.(08 Hrs)							
Unit-VI	Supe	rvised & Unsuperv	vised l	learning: Discussion	on Clustering a	nd Classification			
	algori	thms, Naïve Bayes	Theo	rem, Decision Tree, S	VM (08 Hrs)				
	Sr.								
References	No.	Title		Author	Publication	Edition/Year			
	1.	Artificial Intelligen	ce	Rich and Knight	MGH	2 nd Edition			

	"Practical Workbook			2018
2.	Artificial Intelligence and	Anindita Das	Shroff	
	Soft Computing for	Bhattacharjee	Publisher-X	
	beginners		team Publisher	
3.	"Python Machine		Packet	2017
	Learning by Example"	Yuxi (Hayden) Liu	Publishing	
			Limited	
4	Machine Learning	Tom Mitchel	McGraw Hill	2017
5	Pattern Recognition and	Christopher M.	Springer	2011
	Machine Learning,	Bishop,		
6	The Elements of	T. Hastie, R.	Springer	2e 2011
	Statistical Learning	Tibshirani,		
		J. Friedman		

	Maharashtra Institute of 7	Fechnology								
	(An Autonomous Institute)									
	Department of Computer Science and Engineering									
Syllabus of	Syllabus of S. Y. B. Tech. (Honours* in Artificial Intelligence & Machine Learning) Semester-IV									
Course Code:	EST971	Credits: 0-0-1								
Course: Labor	ratory Introduction to	Term Work: 25 Marks								
Artificial Intel	lligence and MachineLearning									
Teaching Sch	eme: Practical: 02 Hrs/week									
Prerequisite	Any programming language Python/R/Matl	ab								
Objectives	• Implement AI & ML concepts.									
	1. Implementation of logical rules in Python.									
	2. Using appropriate data apply the concept of I	inear regression								
	3. Using appropriate data apply the concept of C	Gradient decent								
List of	4. Using appropriate data apply the concept of I	logistic regression								
Practical	5. To add the missing value in any data set.									
	6. Perform and plot under fitting and over fitting	g in a data set.								
	7. Implementation of clustering algorithms.									
	8.Implementation of classification algorithms.									

The assessment of term work shall be done based on the following.

- Continuous assessment
- Performing the experiments in the laboratory
- Practical/Oral examination conducted on the syllabus and term work mentioned above

	Maharashtra 1	Institute of Technology					
(An Autonomous Institute)							
	Department of Comp	outer Science and Engineering					
Syllabus of T.	Y. B. Tech. (Honours* in Art	ificial Intelligence & Machine Learning) Semester-V					
Course Code: E	ST902	Credits: 4-0-0					
Course: Introduc	ction to Data Analytics	Mid Semester Examination-I: 15 Marks					
Teaching Schem	ne:	Mid Semester Examination-II: 15 Marks					
Theory: 04 Hrs	week	Continuous Internal Evaluation:10 Marks					
Tutorial: 00 Hr/	/week	Teacher Assessment: 10 Marks					
		End Semester Examination: 50 Marks					
	-	End Semester Examination (Duration): 2 Hrs					
Prerequisite	Basics of statistics						
	• Provide the knowledge	in Data Analytics					
Objectives	• Evaluate data visual	izations based on their design and use for					
	communicating stories	from data					
Unit-I	Introduction to Databases: Databases and relational approach, SQL query						
	language, types of data, Basic analytics, Hadoop, MapReduce (08Hrs)						
Unit-II	Introduction to Data Science	ce, Different Sectors using Data science, Purpose and					
	Components of Python in I	Data Science. (07 Hrs)					
	Data Analytica Dragona V	noviladas Chastr Evaluatory Data Analysis (EDA)					
	EDA Quantitativa tachni	ique EDA Graphical Technique Data Analysis (EDA),					
Unit-III	Conclusion and Predictions	(100 H rs)					
	Conclusion and Frederions	. (0) III3)					
	Feature Generation and F	Feature Selection (Extracting Meaning from Data)-					
	Motivating application:	user (customer) retention- Feature Generation					
TT: 4 TV7	(brainstorming, role of do	main expertise, and place for imagination)- Feature					
	Selection algorithms (09 H	rs)					
	Data Visualization- Basic	principles, ideas and tools for data visualization,					
Unit-V	Examples of inspiring	(industry) projects- Exercise: create your own					
	visualization of a complex	dataset. (08 Hrs)					

Unit-VI	Applications of Data Science, Data Science and Ethical Issues- Discussions on privacy, security, ethics- A look back at Data Science- Next-generation data scientists. (07 Hrs)							
	Sr.							
	No.	Title	Author	Publication	Edition			
	1.	Data Science from Scratch	Joel Grus	Shroff Publisher Publisher /O'Reilly Publisher	2Ed			
References	2.	Data Science for the Layman	Annalyn Ng, Kenneth Soo, Numsense	Shroff Publisher Publisher	2Ed			
	3.	Doing Data Science, Straight Talk from The Frontline	Cathy O'Neil and Rachel Schutt	O'Reilly Publisher Media	1Ed			
	4.	Mining of Massive Datasets. v2.1,	Jure Leskovek, Anand Rajaraman and Jeffrey Ullman	Stanford University	1Ed			
	5.	Python Data Science Handbook,	Jake VanderPlas	Shroff Publisher Publisher /O'Reilly Publisher Media	2Ed			
	6.	Data Analysis with Open Source Tools	Philipp Janert	Shroff Publisher Publisher /O'Reilly Publisher Media	2Ed			

	Maharas	htra Institute of Technology						
	(Ar	Autonomous Institute)						
	Department of	Computer Science and Engineering						
Syllabus of '	T V B Tech (Honours*i	n Artificial Intelligence & Machine Learning) Semester-VI						
Course Code: EST002								
Course Coue.								
Course: Arun	cial Neural Networks	Mid Semester Examination-1: 15 Marks						
and Deep Lea	rning	Mid Semester Examination-II: 15 Marks						
Teaching Sch	eme:	Continuous Internal Evaluation: 10 Marks						
Theory: 04 H	Irs/week	Teacher Assessment: 10 Marks						
Tutorial: 00 F	lr/week	End Semester Examination: 50 Marks						
		End Semester Examination (Duration): 2 Hrs						
Prerequisite	Basics of Artificial Intelli	igence, Mathematics						
Objectives	• To get a detail ins	ight of Artificial Neural Networks.						
	• To study Deep Le	earning methods						
	Characteristics of Neural	Networks, Structure and working of a biological neural						
	network, artificial neural network: terminology, models of neurons: Mc Culloch J							
Unit-I	model, Perceptron model	, Adaline model, topology, Basic learning laws. Functional						
	Units for Artificial Neura	l Network for Pattern Recognition Task (8 Hrs)						
	Perceptron – Learning a	and Memory, Learning Algorithms, Error Correction and						
Unit-II	Gradient Decent Rules, P	Perceptron Learning Algorithms, Supervised Learning						
	Backpropagation, Multil	ayered Network Architectures, Back propagation Learning						
	Algorithm, example App	lications of feed forward neural networks. (08 Hrs)						
	Introduction, Associative	Learning, Hopfield network, Error Performance in						
Unit-III	Hopfield networks, simul	ated annealing, Boltzmann machine and Boltzmann						
	learning, State transition	diagram and false minima problem, stochastic update,						
	simulated annealing (08]	Hrs)						
	Convolutional Neural Ne	tworks (CNN), ImageNet, GoogLeNet, ResNet, Visualizing						
Unit-IV	Convolutional Neural Ne	tworks, Classification using CNN						
	(10 Hrs)							
Ilnit-V	Recurrent Neural Nature	ks (RNN) and Long Short-Term Memory (LSTM)						
UIII - V	A pulications of Desure	t Neural Naturate in real world (9 Here)						
	Applications of Recurren	i neural networks in real world. (5 Hrs)						
Unit-VI	Creating and deploying n	etworks using TensorFlow- open source machine learning						

	plat	form and Keras-python d	(6	Hrs)		
	Sr. No.	Title	Author	Publication	Edition/year	
References	1.	Artificial Neural Network	B. Yegnanarayana	PHI Publication	2012	
	2.	Deep Learning, A Practitioner's Approach	Adam Gibson, Josh Patterson	Shroff Publisher O'Reilly Publisher Media	2017	
	3.	Neural Networks for Pattern Recognition	Christopher M. Bishop	Oxford University Press	1Ed	
	4.	Neural Smithing- Supervised Learning in Feedforward Artificial Neural Networks	Russell Reed, Robert J MarksII,	MIT Press	2014	
	5.	Machine Learning with Python for Everyone	Mark Fenner	Pearson	2020	

	Maharashtra Institu	ite of Technology							
(An Autonomous Institute)									
	Department of Computer Science and Engineering								
Syllabus of T	Syllabus of T. Y. B. Tech. (Honours* in Artificial Intelligence & Machine Learning) (Semester-VI)								
Course Code:	EST972	Credits: 0-0-1							
Course: Labor	atory Artificial Neural	Term Work: 25							
Networks and	Deep Learning								
Teaching Sche	eme:								
Practical: 02 H	Irs/week								
Prerequisite	Any programming language Python/I	R/Matlab							
Objectives	• To implement ANN and Deep	b Learning concepts.							
	1. Implementation of MP model								
	2. Implementation of feed forward ne	eural network							
	3. Implementation of back propagation	on neural network							
L ist of	4. Implement all activation function of	of neural network for any pattern recognition							
Practical	application								
i iucticui	5. Implement any one of ImageNet of	r GoogLeNet							
	6. Implement a system to recognize h	and written character using CNN							
	7. Classify images appropriately usin	g CNN							
	8. Implement LSTM Neural Network	for Time Series Prediction							

The assessment of term work shall be done based on the following.

- Continuous assessment
- Performing the experiments in the laboratory
- Practical/Oral examination conducted on the syllabus and term work mentioned above

Maharashtra Institute of Technology									
	(An Autonomous Institute)								
		Department of Compute	r Science and Engine	eering					
Syllabus of Final ye	Syllabus of Final year B. Tech. (Honours* in Artificial Intelligence & Machine Learning) (Semester-VII)								
Course Code: 1	Course Code: EST904 Credits: 4-0-0								
Course: Methods	and Ap	plications in	Mid Semester Exar	nination-I: 15 M	arks				
Artificial Intellige	ence		Mid Semester Exar	nination-II: 15 N	Iarks				
Teaching Scheme	:		Continuous Interna	l Evaluation:10	Marks				
Theory: 4 Hrs/we	ek		Teacher Assessmer	nt: 10 Marks					
Tutorial: 00 Hr/w	/eek		End Semester Exan	nination: 50 Mar	·ks				
			End Semester Exan	nination (Duratio	on): 2 Hrs				
Prerequisite	• B	asics of Artificial Intellig	gence and Machine L	earning					
Objectives	• 1	lo give deep knowledge o	of AI and how AI can	be applied in va	rious fields				
	Bayesian Filtering, Deep Reinforcement Learning, Self-Play Networks, Generative								
Unit-I	Adver	sarial Networks (8 Hrs)							
	Learning from Concept-Drifting Data Streams, Audio Signal Processing,								
Unit-II	Archit	tecturesfor second genera	ation knowledge base	ed systems, Dist	ributed AI and				
	its app	plications(8 Hrs)							
Unit-III	An int	troduction to neurocompu	iting and its possible	role in AI, The r	ole of				
	uncert	ainty measures and princ	iples in AI.(8 Hrs)						
	Lingu	istic aspects of natural lar	nguage processing, A	Iand Quantum C	Computing,				
Unit-IV	Applie	cations of Artificial Inte	elligence (AI) in bu	siness, Robotic	Processes				
	Auton	nation for supply chain m	anagement (8 Hrs)						
	Emoti	on Recognition using hu	man face and body	language, AI b	ased system to				
Unit-V	predic	t the diseases early, Sm	art Investment analy	sis, AI in Sales	and Customer				
	Suppo	ort, AI in Agriculture(10H	Irs)	,					
Unit-VI	AI-Or	timized Hardware, Digit	al Twin i.e. AI Mode	elling, Informati	on Technology				
	& Sec	curity using AI(6 Hrs)							
References	Sr.	Title	Author	Publication	Edition/Year				
	No.								
	1.	Artificial Intelligence:	Stuart Russell and	Pearson	3Ed				
		A Modern Approach	Peter Norvig	Publisher					

2.	Artificial Intelligence:		John Wiley	
	Making a System	Dr. Nilakshi Jain	& Sons	2Ed
	Intelligent			
3.	AI and Analytics,	Sameer	John Wiley	
	Accelerating Business	Dhanrajani	& Sons.	2Ed
	Decisions			
4.	Life 3.0: Being			
	Human in the Age of	Max	Knopf	2Ed
	Artificial Intelligence	Tegmark		
5.	Artificial Intelligence			
	in Practice: How 50			
	Successful Companies	Bernard	Wiley.	2019
	Used AI and Machine	Marr,Matt		
	Learning to Solve	Ward,		
	Problems			
6.	Artificial Intelligence:	Michael		
	A Guide to Intelligent	Negnevits	Pearson	3Ed
	Systems	ky		

		Maharashtra Institut	e of Tech	nnology		
(An Autonomous Institute)						
Department of Computer Science and Engineering						
Syllabu	s of Final Year	B. Tech. (Honours* in A	rtificial I	ntelligenc	e & Machine Learn	ing)
		Semester-	VIII			
Course Code:	EST973			Credits: 0	0-0-2	
Course: Mini	Project			Term Wo	rk: 25 Marks	
Teaching Sche	eme:			Practical	:25 Marks	
Practical: 04 H	Hrs/week					
Prerequisite	Machine Lear	ning and AI Algorithms, F	Programm	ning Lang	uage.	
	To carry out a	mini project in Artificial	Intelligen	ice and M	achine learning.	
	Each student v	will have a faculty mentor	to guide	them.		
	There will be	three reviews with the foll	lowing de	etails:		
				Mark W	Veightage	
	Review #	Requirement	Inte	rnol	Extornal	
				-1 1141	Externar	
	0	Idea Presentation/		-	-	
		Selection				
		Literature Review /				
	1	Proposal for Project	10	0%	-	
		Proposed System				
	2	Design/ Model	2(ገ%		
Guidelines			20	570		
	2	Implementation and		20/		
	5	Demonstration	20	J%	-	
	End	Final Viva-Voce and				
	Semester	Project Demonstration		-	50%	
	Exam					

The assessment of term work shall be done on the basis of the following.

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Note:

- 1. No additional fees will be charged for students opting for Honours/ Minor Degree
- 2. All the courses in the Honours/ Minor will be conducted in offline mode.
- 3. Re-examination is not applicable in Honours and Minor Scheme. Student failing in any of the Minor or Honours courses, at any stage will be discontinued from the Scheme.
- 4. Examination Scheme and Passing rules will be as per the academic rules and regulations of B. Tech.

Note:

- 1. No additional fees will be charged for students opting for Honors/ Minor Degree
- 2. All the courses in the Honors/ Minor will be conducted in offline mode.
- 3. Re-examination is not applicable in Honors and Minor Scheme. Student failing in any of the Minor or Honors courses, at any stage will be discontinued from the Scheme.
- 4. Examination Scheme and Passing rules will be as per the academic rules and regulations of B. Tech.

Maharashtra Institute of Technology (An Autonomous Institute)

Proposed Honours* in Green Technology and Sustainability Engineering Major disciplines in Bachelor in Civil Engineering (With effect from A.Y. 2022-23)

	Honors in Green Technology and Sustainability Engineering															
	Course Code	Course	Ho	Teachi Schen ours / V	ng 1e Veek		Examination Scheme and Marks					Cred	Credit Scheme			
Year & Semester			Theory	Tutorial	Practical	Mid-Sem Exam-1	Mid-Sem Exam-1	Mid-Sem Exam-1	Continuous Internal Evaluation	Teachers Assessment	Term work	Practical	Total Marks	Theory / Tutorial	Practical	Total Credit
SY IV	CED901	Green Technology	04			15	15	10	10	50			100	04		04
	CED971	Green Technology Laboratory			02						25		25		01	01
		Total	04	-	02			100)		25		125	04	01	05
			1										1	Tota	Credi	its=05
TY V	CED902	Sustainable Materials and Green Building	04			15	15	10	10	50			100	04		04
		Total	04	-	-			100)				100	04		04
		•	•								•			Tota	Credi	its=04
TY VI	CED903	Green Building Rating System	04			15	15	10	10	50			100	04		04
	CED972	Green Building Rating System Laboratory			02						25		25		01	01
		Total	04		02			100)		25		125	04	01	05
														Tota	Credi	its=05
Final B. Tech. VII	CED904	Sustainable Engineering Concepts and Lifecycle Analysis	04			15	15	10	10	50			100	04		04
		Total	04					100					100	04		04
					•	•								Total	Credi	its=04
Final B. Tech.	CED973	Mini Project			04						25	25	50		02	02
VIII		Total			04						25	25	50		02	02
			_	_	•. •	_					-			Tota	Credi	its=02
	Total Credit for Semester IV+V+VI+VII +VIII= 20															

	Maharashtra I	nstitute of Technology, Aurangabad					
	(An Autonomous Institute)						
Department of Civil Engineering							
Syllabı	Syllabus of SY B. Tech. (Honours* in Green Technology and Sustainability Engineering)						
		Semester-IV					
Course Code	e: CED901	Credits: 4-0-0					
Course: Gre	en Technology	Mid Semester Examination-I: 15 Marks					
Teaching Sc	heme:	Mid Semester Examination-II: 15 Marks					
Theory: 04	Hrs/week	Continuous Internal Evaluation:10 Marks					
Tutorial: 00	Hr/week	Teacher Assessment: 10 Marks					
Practical: 02	Hrs/week	End Semester Examination: 50 Marks					
		End Semester Examination (Duration): 02 Hrs					
Prerequisit	eBasics of Environmental s	science, introduction to ecology, basic concepts of energy					
	generation and conservation	on.					
	1. To introduce conc	cept of green technology.					
	2. To impart the kno	wledge of carbon emission.					
Objectives	3. To introduce concept of life cycle assessment						
	4. To learn the importance of green fuels and its impact on environment.						
	Introduction to green tee	chnology: Definition of Green Technology and its					
	Importance, History and evolution of green technology, advantages and disadvantages						
T] : 4 T	of green technologies, factors affecting green technologies, Role of Industry,						
Unit-I	Government and Institution	ons, introduction to industrial Ecology and role of industrial					
	ecology in green technolo	gy.					
		(08 Hrs)					
	Cleaner Production (CP)): Definition, Importance, Principles of Cleaner Production					
	and its Benefits, Role of In	ndustry, Government and Institutions in cleaner production,					
Unit-II	clean development mecha	nism, reuse, recovery, recycle, raw material substitution-					
	Wealth from waste.						
		(08 Hrs)					
	CP awareness and life cy	vcle assessment: Pollution Prevention and Cleaner					
I Init-III	Production Awareness Pla	an, Waste audit, Environmental Statement, carbon credit,					
01111-111	carbon trading. Introduction	on to Life Cycle Assessment (LCA) and Elements of LCA.					
(08]							
	Energy sources: Availab	ility and need of conventional energy resources, major					
Unit-IV	environmental problems r	elated to the conventional energy resources, future					
	possibilities of energy nee	ed and availability.					
Non-conventional energy sources: Solar Energy, devices and technology used in s							

	energ	y conversion, their principl	les, working and appl	ication.						
					(08 Hrs)					
	Gree	n fuels: Definition of Gree	n Fuels, their benefits	and challenges,	comparison of					
Unit-V	green	fuels with conventional fo	ssil fuels with referen	ce to environme	ntal, economic					
	and s	and social impacts, public policies and market driven initiatives								
	Biom	ass energy: Concept of bio	mass energy utilization	on, types of biom	lass.					
					(08 Hrs)					
	Wind	l, tidal and geothermal en	ergy: Wind Energy,	energy conversion	on technologies,					
	their	principles, and suitability in	n Indian context; intro	oduction to tidal	and geothermal					
Unit-VI	energ	y and their suitability in va	rious regions.							
					(08 Hrs)					
	Sr.	Title	Author	Publication	Edition					
	No.									
		Pollution Prevention:								
	1.	Fundamentals and	Paul L Bishop	McGraw Hill	Year 2000					
		Practice		International						
	2.			World Bank						
		Pollution Prevention and	World Bank Group	and UNEP,						
Defenences		Abatement Handbook –		Washington	Year 1998					
Kelerences		Towards Cleaner		D.C.						
		Production								
	3.			Environmental						
				System						
		Classor Production Audit	Prasad Modak,	Reviews,						
		(1005)	C.Visvanathan and	No.38, Asian	Year 1995					
		(1775)	Mandar Parasnis	Institute of						
				Technology,						
				Bangkok						
	4.	Handbook of Organic	Bewik M W M	Bewik						
		Waste Conversion		M.W.M.	1 st Edition					

Maharashtra Institute of Technology, Aurangabad						
(An Autonomous Institute)						
	Department of Civ	vil Engineering				
Syllabus	of SY B. Tech. (Honours* in Green 7	Technology and Sustainability Engineering)				
	Semeste	er-IV				
Course Cod	Course Code: CED971					
Course: Gre	een Technology Laboratory	Credits: 0-0-1				
Teaching So	cheme:	Term Work: 25 Marks				
Practical: 2	Hrs/week					
Objectives	To introduce the detailed concept of	green technology and various sources of				
Objectives	energy as alternative to conventional	l ones.				
	The following assignments need to be submitted:					
	1. Definition of Green Technolo	egy, its Importance and advantages and				
	disadvantages					
	2. Role of industrial ecology in	green technology.				
	3. Principles of Cleaner Product	tion and its Benefits.				
List of	4. Clean development mechanis	sm, Wealth from waste.				
Practical	5. Carbon credit and carbon trac	ling.				
	6. Introduction to Life Cycle As	ssessment and its Elements.				
	7. Comparison of conventional	and Non-conventional energy sources.				
	8. Devices and technology used	in solar energy conversion.				
	9. Green Fuels, their benefit and	d challenges.				
	10. Concept of biomass energy u	tilization, types of biomass				
11. Suitability of wind, tidal and geothermal energy in Indian context.						
The assessment of term work shall be done on the basis of the following.						

- Continuous assessment.
- Performance of students.

	Maharashtra l	Institute of Technology, Aurangabad				
	(A	an Autonomous Institute)				
	Department of Civil Engineering					
Syllabu	is of TY B. Tech. (Honour	rs* in Green Technology and Sustainability Engineering)				
		Semester-V				
Course Code	e: CED902	Credits: 4-0-0				
Course: Sust	tainable Materials and	Mid Semester Examination-I: 15 Marks				
Green Build	ing	Mid Semester Examination-II: 15 Marks				
Teaching Sc	heme:	Continuous Internal Evaluation:10 Marks				
Theory: 04	Hrs/week	Teacher Assessment: 10 Marks				
Tutorial: 00	Hr/week	End Semester Examination: 50 Marks				
		End Semester Examination (Duration): 02 Hrs				
Prerequisit	Basics concepts of green	technology and sustainability, introduction to civil				
	engineering building mate	erials.				
	The objective of this cou	rse is to expose the students to the concepts of sustainability				
Objectives	in the context of building	and conventional engineered building materials.				
	The course also intends to	The course also intends to make student aware of various green building councils.				
	Introduction to sustain	nability and green building: Introduction to sustainable				
	materials and the concept	of green building. Embodied energy and Operational energy				
Unit-I	in Building and Life cycle energy. Ecological footprint, Bio- capacity and calculation					
	of planet equivalent.					
		(08 Hrs)				
	Sustainable materials:	Role of Material: Carbon from Cement, alternative cements				
	and cementitious materi	al, Alternative fuel for cements for reduction in carbon				
T 1 1	emission. Sustainability	emission. Sustainability issues for concrete. Role of quality, minimization of natural				
Unit-11	resource utilization, High	volume fly ash concrete, geo-polymer concrete etc. concrete				
	with alternative material	with alternative material for sustainability.				
		(08 Hrs)				
	Energy and resources of	consumption: Reduction in water consumption in concrete,				
	Recycled aggregate, Ene	rgy for grinding and crushing of cement, aggregate etc. and				
T	reduction. Operational er	nergy in building role of materials and thermal conductivity.				
Unit-111	Clay Bricks, Types of ki	Ins, Comparative energy performance emission performance				
	and financial performance	e, Indoor air quality.				
		(08 Hrs)				
	Operational energy con	sumption: Paints, Adhesive and sealants for use in building,				
Unit-IV	Volatile organic conten	nt (VOC) emission issues and indoor air quality for				
	Sustainability and Health hazard. Operational energy reduction and net zero building,					

	Optin	nization for design of build	ling for energy efficier	ncy and exampl	e of optimization					
	throu	gh use of Evolutionary gen	etic algorithm.							
					(08 Hrs)					
	Ener	gy and resources balance	e: Radiation budget, S	urface water ba	alance, Effects of					
Unit-V	trees	and microclimatic modifi	cation through greeni	ng. Use of Bu	ilding Integrated					
	Photo	voltaic (BIPV) and other	er renewable energy i	n buildings, ba	sic concepts and					
	effici	ency.								
					(08 Hrs)					
	Ener	gy codes: ECBC requirer	ment, Concepts of O	verall Thermal	Transfer Value					
	(OTT	V), Green Performance	rating, requirements	of Leadership	in Energy and					
Tin:+ VI	Envir	conmental Design (LEED), Green Rating for	Integrated Hal	oitat Assessment					
Unit-VI	(GRI	(GRIHA) and Indian Green Building Council (IGBC).								
					(08 Hrs)					
	Sr.	Title	Author	Publication	Edition					
	No.									
	1.	Sustainability	Allen D T and							
		Engineering: Concepts,	Allen, D. I. and	Prentice Hall	I st					
References		Design and Case Studies	Snonnard, D. K.							
	2.	Engineering applications	Bradley. A.S;	Congogo						
		in sustainable design and	Adebayo, A.O.,	Cengage	I st					
		development	Maria,	learning						
	3.	Environment Impact	Notification of	2006	2006					
		Assessment Guidelines	Government of India	2000	2008					
	4.	Basic Concepts in		Lewis						
		Environmental	Mackenthun, K.M.	Publication	1998					
		Management		London						
	5.		New Delhi Bureou of	Publications-						
		CPIHA Pating System	Fnergy Efficiency	Rating System	ECBC Code					
		OKITA Kating System	Energy Enterency	TERI	2007					
				Publications						

	Maharashtra Institu	ite of Technology, Aurangabad				
(An Autonomous Institute)						
	Department of Civil Engineering					
Syllabus of	TY B. Tech. (Honours* in	Green Technology and Sustainability Engineering)				
	S	Semester-VI				
Course Code: C	ED903	Credits: 4-0-0				
Course: Green E	Building Rating System	Mid Semester Examination-I: 15 Marks				
Teaching Schem	ne:	Mid Semester Examination-II: 15 Marks				
Theory: 04 Hrs	s/week	Continuous Internal Evaluation:10 Marks				
Tutorial: 00 Hr	/week	Teacher Assessment: 10 Marks				
Practical: 02 Hrs	s/week	End Semester Examination: 50 Marks				
		End Semester Examination (Duration): 02 Hrs				
Prerequisite	Concept of green technolo	gy and energy conservation.				
	Introduction to sustainabil	ity.				
	1. To create interest	among students in green buildings and motivate them				
Objectives	to pursue knowledge in this field.					
Objectives	2. To give basic introduction about various green building rating systems.					
	3. To give practical view of rating of green buildings through case studies.					
	Introduction of green b	uilding: Concept of green building, History of green				
	building, Need of green building in present scenario, Importance of green					
IInit-I	building Merits and demerits, Classification of green building, Assessment					
	methods Global assessment and certification, Local assessment, GRIHA (Green					
	Rating for Integrated Habitat Assessment)					
		(08 Hrs.)				
	Rating System: LEED and	IGBC rating systems, their comparison and similarities,				
Unit-II	various points calculation,	ratings e.g. Silver, Gold and Platinum based on points				
	given under various criteric	on.				
		(08 Hrs.)				
	Building Planning: Planr	ning a building for less energy consumption, principles				
	of planning, optimized use	e of natural resources with the help of sun diagram.				
Unit-III	Plan construction activitie	s for reduced energy consumption.				
	Materials: Recycled, proce	essed, locally available, sustainable material, new age				
	green materials.					
	Flowents of Care D 41	(08 Hrs.)				
TT	Elements of Green Build	ings: Light, Ventilation, water recycle & optimization,				
Unit-IV	HVAC system, Electric efficiency, Finishing items, Furniture & fixtures, Low VOC					

	paint, Landscaping and its maintenance.					
					(08 Hrs.)	
Unit-V	Energy conservation: Bureau of energy efficiency, its functions, policies, guidelines, Energy Conservation Building Code, Carbon footprint, carbon credits and their calculation, carbon trading, carbon emission. Zero discharge concept.					
Unit-VI	Case Studies: Industrial Building, Hotel, Residential Building, Commercial complex, Educational Institute, Government building, study and report.					
	Sr. No.	Title	Author	Publication	(08 Hrs.) Edition	
References	1.	Green Buildings: Professional guide to Concepts, Codes & Innovations,	Anthony Floyd	Cenage Learning	Handbook	
	2.	Green Building Materials: A guide to product selection & specification	Ross Spiegel & Dru meadows	John Wiley & Sons	1 st Edition	
	3.	Guide to Energy Conservation, energy planning for buildings	Seymour Jurmul	Mc Grow-Hill	1 st Edition	
	4.	Energy efficient buildings in India	Mili Muzumdar	Ministry of Nonconventional Energy sources	Handbook	

Maharashtra Institute of Technology, Aurangabad							
(An Autonomous Institute)							
	Department of Civil Engineering						
Syllabus	s of TY B. Tech. (Honours* in Green Technology and S	Sustainability Engineering)					
	Semester VI						
Course Coc	le: CED972						
Course: Lal	poratory of Green Building Rating System	Credits: 0-0-1					
Teaching S	cheme:	Term Work: 25 Marks					
Practical: 2	Hrs/week						
Objectives	To introduce the detailed concept of green building	ng rating system and energy					
Objectives	efficiency.						
	The following assignments need to be submitted:						
	1. Importance of green building and its evolution.						
	2. Detailed criterion of LEED rating system.						
	3. Comparison and similarity between LEED and I	GBC.					
List of	4. Principles of planning a building.						
Practical	5. New age green materials.						
	6. Water recycling and HVAC system.						
	7. Landscaping and its maintenance.						
	8. Carbon credits and reduction in carbon emission						
	9. Case study of a commercial green building.						
	10. Case study of a green hotel building.						
The assessm	nent of term work shall be done based on the following						
• Con	tinuous assessment.						
• Perf	formance of students.						

	Maharashtra Institute of Technology, Aurangabad					
	(An Autonomous Institute)					
	Department of	Civil Engineering				
Syllabus of	Final Year B. Tech. (Honours* in	Green Technology and Sustainability Engineering)				
	Sem	ester-VII				
Course Code	:: CED904	Credits: 4-0-0				
Course: Sust	ainable Engineering Concepts and	Mid Semester Examination-I: 15 Marks				
Lifecycle An	alysis	Mid Semester Examination-II: 15 Marks				
Teaching Sch	neme:	Continuous Internal Evaluation:10 Marks				
Theory: 04	Hrs/week	Teacher Assessment: 10 Marks				
Tutorial: 00	Hr/week	End Semester Examination: 50 Marks				
Practical: 00	Hrs/week	End Semester Examination (Duration): 02 Hrs				
Prerequisite	Introduction to the Basics concepts	of sustainability, introduction to cleaner				
	production and green technology.					
	This course will introduce student	s to the fundamental concepts related to interaction				
Objectives	of industrial and environmental/eco	ological systems.				
	he application of life cycle assessment methodology using appropriate case studies.					
	Introduction to LCA: An Introd	luction to Sustainability Concepts and Life Cycle				
	Analysis, comparison of life cycle of traditional and green construction materials,					
Unit-I	concept of Material flow and waste management, What it all means for an engineer,					
	Water energy and food nexus.					
	(08 Hrs)					
	Risk assessment and EIA: Ris	k and Life Cycle Framework for Sustainability,				
	concept of Risk, Environmental	Risk Assessment, Examples of risk assessment,				
Unit-II	Chemicals and Health Efects, Char	acteristics of Environmental Problems.				
	Environmental Data Collection and concept of environmental impact assessment.					
		(08 Hrs)				
	Methodology of LCA: Life C	ycle Analysis, Detailed Methodology and ISO				
	Framework of Life Cycle Assessm	ent, Detailed Example on LCA Comparisons, LCA				
Unit_III	Benefits and Drawbacks, Histo	rical Development and LCA Steps from ISO				
01111-111	Framework: Life Cycle Inventor	ry and Impact Assessments, Unit Processes and				
	System Boundary Data Quality, Pr	ocedure for Life Cycle Impact Assessment.				
		(08 Hrs)				
	LCA Studies: Factors for Goo	d LCA Study, ISO Terminologies, Life Cycle				
Unit-IV	Assessment Steps Recap, Cher	nical Release and Fate and Transport, Green				

	Sustainable Materials, study of life cycle assessment taking one example.										
					(08 Hrs)						
	Desig	gn for Sustainability: E	nvironmental Design	for Sustainab	ility, Economic,						
Unit-V	Environmental Indicators, Social Performance Indicators, Sustainable Engineer										
	Design Principles and Environmental Cost Analysis.										
					(08 Hrs)						
	Case	studies: Case Studies of I	life cycle analysis and	d use of sustain	able materials in						
	construction, studies like Odor Removal for Organics Treatment Plant, Comparison of										
Unit VI	Hand Drying Methods, Biofuels for Transportation, Kerosene Lamp vs. Solar Lamp,										
	Bioplastic.										
					(08 Hrs)						
	Sr.	Title	Author	Publication	Edition						
References	No.										
	1.	Sustainability Engineering: Concepts, Design and Case Studies	Allen, D. T. and Shonnard, D. R.	Prentice Hall	I st						
	2.	Engineering applications in sustainable design and development	Bradley. A.S; Adebayo, A.O., Maria,	Cengage learning	I st						
	3.	Systems Analysis for Sustainable Engineering: Theory and Applications	Ni bin Chang	McGraw-Hill Professional	Edition I						
	4.			English							
		Renewable Energy	Twidell, J. W. and	Language							
		Resources	Weir, A. D.	Book Society							
				(ELBS)							

Maharashtra Institute of Technology, Aurangabad

(An Autonomous Institute)

Department of Civil Engineering

Syllabus of Final Year B. Tech. (Honours* in Green Technology and Sustainability Engineering)

Semester-VIII

Credits: 0-0-2

Term Work: 25 Marks

Practical: 25 Marks

Course Code: CED973

Course: Mini Project

Teaching Scheme:

Practical: 04 Hrs/week

Prerequisite Introduction to the Basics concepts of sustainability, introduction to cleaner production and green technology, green materials, life cycle analysis.

To carry out a mini project and simple prototype in the area of interest based on the knowledge gained in Green technology and sustainable engineering from undergraduate.

Every individual student will be assigned a faculty to guide them. There will be three major reviews which will be carried out as listed below:

Review #	Requirement	Marks Weightage			
		Internal	External		
0	Area/ Title selection	-	-		
1	Literature review,	10%	-		
	Proposal for the project.				
2	Detailed experimentation	20%	-		
	and analysis of the				
	project work.				
3	Final interpretation of	20%	-		
	results and presentation				
	of prototype or				
	simulation.				
End Semester Exam	Final Viva-Voce and	-	50%		
	project demonstration.				

The assessment of term work shall be done on the basis of the following.

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Note:

- 1. No additional fees will be charged for students opting for Honours/ Minor Degree
- 2. All the courses in the Honours/ Minor will be conducted in offline mode.
- 3. Re-examination is not applicable in Honours and Minor Scheme. Student failing in any of the Minor or Honours courses, at any stage will be discontinued from the Scheme.
- Examination Scheme and Passing rules will be as per the academic rules and regulations of B. Tech.

Maharashtra Institute of Technology (An Autonomous Institute)

Proposed Honours* in "Cloud Computing" Major Disciplines in

Bachelor in Computer Science and Engineering

Bachelor in Artificial Intelligence and Data Science

Bachelor in Computer Science and Design

	Honours*in Cloud Computing															
	Course	Course		Teaching Examination Scheme and Marks Credit Scheme						heme						
	Code			Scheme												
			Н	Hours/Week												
er						Ŧ	÷	erna	sme	Exa						
nest			A	_	-	xan	lxan	s Int	sses	iter	¥		ırks			dit
Ser			eor	oria	ctica	mE	im F	tion	ILS A	smes	wor	cal	I M	V Iai	cal	Cre
ar &			Ē	Tut	Pra	d-Se	S-D	ntin alua	ache	d-S	erm	ract	lota	neor	ract	otal
en nu	CGE 001		0.4			Mi	Mi		E	E	Ē	P	100	ĒĒ	P	E
SY IV	CSE901	Cloud computing	04			15	15	10	10	50			100	04		04
		Foundation														
	CSE971	Laboratory			02			-			25		25		01	01
		Total	04	-	02			10	00		25		125	04	01	05
														Total	Credi	ts=05
TY V	CSE902	Basic Services	04			15	15	10	10	50			100	04		04
		in Cloud														
		Total	04	-	-			10	00	I			100	04		04
														Total	Credi	ts=04
TY VI	CSE903	Database and	04			15	15	10	10	50			100	04		04
		Storage in Cloud														
		Computing														
	CSE972	Laboratory			02			-			25		25		01	01
		Total	04		02			10	00	1	25		125	04	01	05
	1	L	1	1	1	1					1	1	1	Total	Credi	ts=05
Final	CSE904	Economics and	04			15	15	10	10	50			100	04		04
B.Tech.		Billing in Cloud														
VII																
		Total	04					10					100	04		04
		Totai	04					10	J				100	04		04
Total Credits=04																
Final	CSE973	MiniProject			04			-			25	25	50		02	02
B.Tech.		Tatal			04						25	25	50		02	02
VIII		1 otal			04			-			25	25	50		02	02
										•			•	Total	Credi	ts=20
		Total Cre	dit f	or Sei	neste	r IV-	+ V +`	VI+V	I +VII	I=20						

Maharashtra Institute of Technology								
(An Autonomous Institute)								
Department of Computer Science and Engineering								
Syllabus of S. Y. B. Tech. (Honours* in Cloud Computing) Semester-IV								
Course Code:	CSE901	Credits: 4-0-0						
Course: Cloud	computing Foundation	Mid Semester Examination-I: 15 Marks						
Teaching Sche	eme:	Mid Semester Examination-II: 15 Marks						
Theory: 04 H	rs/week	Continuous Internal Evaluation:10 Marks						
Tutorial: 00 H	Ir/week	Teacher Assessment: 10 Marks						
		End Semester Examination: 50 Marks						
		End Semester Examination (Duration): 2 Hrs						
Prerequisite	Cloud Computing Basics							
	• To review and stre	engthen important concepts of Cloud Computing						
Objectives	• Introduce the conce	ept cloud computing						
	Introduction to the cloud computing, Advantages of cloud computing, Cloud							
Unit-I	Adoption Framework, Cloud Computing models, Cloud service categories. IAAS,							
	PAAS, SAAS. Pricing Models, Billing and Cost concepts, Pricing Calculator.							
	(08Hrs)							
	Introduction to the Cloud Infrastructure, On premises Infrastructure, Global							
	Connectivity of cloud computing, Cloud Dashboard Management, Cloud Region,							
Unit-II	Cloud Availability Zone, Edge Location, Data Centers, Cloud Server.							
	(08 Hrs)							
	Introduction EC2, Define EC2, Compute service overview, EC2 Cost							
	Optimization, Container, Lambda service and its category, difference between							
Unit_III	managed service and unmanaged service in EC2, Elastic Benstalk service and its							
01111-111	application.							
	(08 Hrs)							
	Introduction to the Cloud Security, Concept of Identity Access Management							
Unit-IV	Service, Shared Responsibility Model, Customers responsibility and Cloud Service							
	Provide Responsibility, Cloud Account Security, Cloud Root Security, Cloud							
	Customer Security. Ensure Security Compliance through Dashboard.							
	(08Hrs)							
	Cloud Network, Introduction to virtualization, Concept of Virtual Machines, Define							
Unit-V	Instances in cloud, Cloud Network basics, Cloud Network services, Virtual Private							

	 Cloud, Virtual Private Network. Cloud front service, Cloud Watch service. (08Hrs) Cloud Content Delivery methods, VPC security, Route 53 service of cloud computing, Lab Diagram (10 systems), VPC and VPN configuration. Cloud Identity Access group, VPN and VPC cloud compliances. (08 Hrs) 								
Unit-VI									
		Title	Author	Publication	Edition/Year				
References	1	Mastering Cloud Computing	Rajkumar Buyya	Mcgraw Hill	2015				
	2	Cloud Computing Implementation Management and security	John W Ritting House	CRC Press	2014				
	3	Cloud Computing A Practical approach	Anthony T Velte	Mcgraw Hill	2015				
	4	Cloud Computing Web based application that change the way you work and collaborate online	Nichael Miller	Pearson	2015				
nology									

)									
Engineering									
omputing) Semester-IV									
: 0-0-1									
Vork: 25									
PAAS, SAAS).									
e.com									
Apex programming Language									
A Applications									
are's Workstation/ Oracle's Virtual Box									
ier service of AWS									
oop Map/Reduce.									
C-II and Container									

	Maharas	htra Institute of Technology						
	(An Autonomous Institute)							
	Department of Computer Science and Engineering							
	Syllabus of T. Y. B. Tech. (Honours* in Cloud Computing) Semester-V							
Course Code	: CSE902	Credits: 4-0-0						
Course: Basi	c Services in Cloud	Mid Semester Examination-I: 15 Marks						
Teaching Sch	neme:	Mid Semester Examination-II: 15 Marks						
Theory: 04 H	Hrs/week	Continuous Internal Evaluation:10 Marks						
Tutorial: 00	Hr/week	Teacher Assessment: 10 Marks						
		End Semester Examination: 50 Marks						
		End Semester Examination (Duration): 2 H	lrs					
Prerequisite	Cloud Computing Basics	of services.						
	• To review and str	engthen important concepts of Cloud Compu	ting					
Objectives	• Introduce the con	cept cloud computing						
	Introduction to Cloud ser	vices, Concept of Infrastructure as a Service	, Platform as					
Unit-I	a service, Software as service, protocols in cloud computing (HTTP, FTP, IP,							
	TCP), On-Demand Servi	ce, Pay as you go service, measured service.	(08Hrs)					
	. Introduction to Compute service of cloud computing, Elastic Cloud Computing							
Unit-II	service, EC-2 Cost Optimization, ECS service, EKS service, Lambda Service,							
	ECR service, Concept of Container, Concept of Docker, Cloud Trail and Config							
	service of Cloud computi	ng.	(08 Hrs)					
	Introduction to cloud Da	tabase Service, Concept of Relational Databa	ase Service					
Unit-III	(RDS), Cloud computing	ng databases: Mongodb, RedhShift, Auro	ora. Cloud					
	database Dynomodb.		(08 Hrs)					
	Introduction to Cloud	Storage service, Simple Storage service	(S3), Basic					
Unit-IV	function of S-3 Storag	e, Elastics Block Storage (EBS), Elastic	File Storage					
	(EFS), Difference betw	een EBS and EFS storage, Cloud Glacier	service for					
	database creation, Cloud	Object Storage, Cloud Block Storage.	(08Hrs)					
	Introduction to the VP	C service, Subnet, Network load balancir	ig, Network					
Unit-V	Gateway, IP-V4 and IP	-vo, Reserved IP Address, Elastic Network	k Interfaces,					
	NAT (Network Address	ranslation), VPC Sharing, On-Premises Ser	(OSU rg)					
	Introduction to Site to S	uii services.	(VOIIIS)					
Unit-VI	(Direct Connect) VPC	End Point, Concept of Transit Cateway, V	DC Socurity					
	(Direct Connect), VPC	End Point, Concept of Transit Gateway, V	rC Security					

	Group,		(08 Hrs)		
Doforonoog		Title	Author	Publication	Edition/Year
References	1	Mastering Cloud	Rajkumar	Mcgraw Hill	2015
	2	Cloud Computing	Juyya John W Ritting	CRC Press	2014
	_	Implementation	House		2011
		Management and security			
	3	Cloud Computing A Practical approach	Anthony T Velte	Mcgraw Hill	2015
	4	Cloud Computing Web	Nichael Miller	Pearson	2015
		based application that			
		and collaborate online			

	Maharashtra	Institute of Technology				
	(An Autonomous Institute)					
	Department of Com	puter Science and Engineering				
	Syllabus of T. Y. B. Tech. (Hor	nours* in Cloud Computing) Semester-VI				
Course Code:	CSE903	Credits: 4-0-0				
Course: Datab	ase Storage in Cloud	Mid Semester Examination-I: 15 Marks				
Computing		Mid Semester Examination-II: 15 Marks				
Teaching Sche	eme: Theory: 04 Hrs/week	Continuous Internal Evaluation:10 Marks				
Tutorial: 00 H	Ir/week	Teacher Assessment: 10 Marks				
		End Semester Examination: 50 Marks				
		End Semester Examination (Duration): 2 Hrs				
Prerequisite	Cloud Computing Basics and	storage				
	• To review and stre	ngthen important concepts of Cloud Computing				
Objectives	• Introduce the conc	ept cloud computing and Storage services of Cloud				
	Introduction to cloud Stora	ge, Storage billing and Dashboard, Block Storage,				
Unit-I	Object Storage, individual storage volume, boot volume for EC-2 instances, Data					
	storage, file system, database host, enterprise application for storage of cloud					
	services. (08Hrs)					
	Elastic Block storage volume types, EBS features, Simple storage service (S-3), S-3					
Unit-II	Bucket, S-3 Storage Classes, Amazon S3 Intelligent Tiering, Amazon S3 Standard,					
	Infrequent Access (Amazon S3 Standard, Amazon S3 One Zone, Infrequent Access					
	(Amazon S3 One Zone, Amazon S3 Glacier, Amazon S3 Glacier Deep Archive.					
	(08 Hrs)					
	Introduction to Elastic File	e System, EFS features, EFS Architecture, EFS				
Unit-III	implementation, EFS resourc	es, Glacier Storage service and its working principle,				
	Glacier service use cases, lit	fe cycle policies, cloud storage services, S3 and S3				
	Glacier services.	(08 Hrs)				
	Introduction to storage serv	er, server encryption, client decryption, KMS (Key				
Unit-IV	Management Service), CMF	KS (Customer Master Keys), Storage control access				
	service, Data archive with cloud services, 119s durability of storage.					
	(08Hrs)					
	Comparison of difference ty	pes of storage in cloud computing, EBS, EFS, S-3,				
Unit-V	Glacier, Functions of EFS, D	Durability of EBS, Consistency of S-3, Customer and				
	service provider service of clo	oud storage.				
	(08 Hrs)					

Unit-VI	Introduction to storage snapshot service, storage elasticity, difference between SSD and HHD, Storage volume and its type, mounting, Temporary storage, Pricing model for storage, Storage consol, (08 Hrs)									
References		Title	Author	Publication	Edition/ Year					
	1	Cloud Computing Bible	Barrie Sosinsky	Wiley	201					
	2	Enterprise Cloud Computing Technology Architecture	Gautam Shroff	Cambridge University	2014					
	3	Web Technologies TCP /IP Web Java Programming & Cloud Computing	Achut Godbole	Mcgraw Hill	2014					
	4	Cloud computing with the Window Azure Platform	Roger Jennings	Wiley	2015					

	Maharashtra Institute of Technology						
	(An Autonomous Institute)						
	Department of Computer Scie	ence and Engineering					
	Syllabus of T. Y. B. Tech. (Honours* in)	Cloud Computing) Semester-VI					
Course Code:	CSE972	Credits: 0-0-1					
Course: Labor	atory Database Storage in Cloud	Term Work: 25 Marks					
Computing Te	aching Scheme:						
Practical: 02 H	Irs/week						
Prerequisite	Basics of Web Programming						
Objectives	• To implement Database concept	s in Cloud					
List of Practical	 Installation and configuration of own Clo Implementation of Virtualization in Cloud Benefits of Virtualization in Cloud using Study and implementation of infrastructu Write a program for Web feed using PHI Write a Program to Create, Manage and g Administrative Features. To Study Amazon Lambda Service. To Study Amazon Object storage 	and Computing to Learn Virtualization Basics, Open Source Operating System are as Service using Open Stack. P and HTML. groups User accounts in own Cloud by Installing atabase.					

- Continuous assessment
- Performing the experiments in the laboratory
- Practical/Oral examination conducted on the syllabus and term work mentioned above

	Maharashtra	Institute of Technology						
	(An Autonomous Institute)							
Department of Computer Science and Engineering								
Sy	llabus of Final year B. Tech. (He	onours* in Cloud Computing) Semeste	r-VII					
Course Code	: CSE904	Credits: 4-0-0						
Course: Ecor	nomics and Billing in Cloud	Mid Semester Examination-I: 15 Mar	:ks					
Teaching Scl	neme: Theory: 4 Hrs/week	Mid Semester Examination-II: 15 Ma	urks					
Tutorial: 00	Hr/week	Continuous Internal Evaluation:10 M	arks					
		Teacher Assessment: 10 Marks						
		End Semester Examination: 50 Mark	s					
		End Semester Examination (Duration)	: 2 Hrs					
Prerequisite	Cloud Computing Basi	ics and dashboard / billing						
	To review and stren	ngthen important concepts of Cloud Co	omputing					
Objectives	• Introduce the conce	ept cloud computing and cost and budg	geting.					
	Fundamental of cloud pricin	g, Cloud Pricing philosophy, Pricing	Characteristics,					
Unit-I	Pricing Calculator, Service ut	tilization methodology, Billing and A	ccount Visibility					
	of Cloud services, Billing Das	hboard	(08 Hrs)					
	Introduction to Cloud Cost e	explorer, Services and Budgeting, Co	ost of services					
Unit-II	used, Service usage report, D	Data Transfer rate, Cloud Upfront Exp	penses, Tiered					
	Pricing model, Custom pricing	g model, Cloud free tier concept.	(08 Hrs)					
	Cloud services with no charge	e, VPC, Beanstalk, Auto Scaling, Cloud	d Formation,					
Unit-III	Identify Access management,	Consolidated billing model, Inbound of	lata transfer,					
	Outbound data transfer, Intr	roduction to TCO (Total Cost of	Ownership),					
	Business cases and workload.		(08 Hrs)					
	Introduction to Service cos	t, Storage cost, Network cost, IT	Labor Cost, On					
Unit-IV	Premises billing model, Prici	ing Calculator, Reading and estimate,	ROI and billing					
	dashboard, Storage saving, in	stance saving	(08Hrs)					
	Introduction to policy bas	sed account management; Group	based account					
Unit-V	management, Automate Acc	count Management, Service Control	Polices, Cloud					
	Management Counsel, Comma	and Line Interface, SDK (Software De	velopment Kit).					
			(08Hrs)					
Unit-VI	Introduction to cost manageme	ent and billing, Spend Summary, Cloud	d Budget, Cloud					
	Usage report, Forecast and tra-	ck costs, SNS (Simple Notification Ser	rvice), Technical					
	support, Cloud support plan.		(08 Hrs)					

References		Title	Author	Publication	Edition/Year
	1	Cloud Computing Bible	Barrie	Wiley	201
			Sosinsky		
	2	Enterprise Cloud Computing	Gautam	Cambridge	2014
		Technology Architecture	Shroff	University	
	3	Web Technologies TCP /IP Web	Achut	Mcgraw Hill	2014
		Java Programming & Cloud	Godbole		
		Computing			
	4	Cloud computing with the	Roger	Wiley	2015
		Window Azure Platform	Jennings		

			Maharashtra Institute o	f Technology								
			(An Autonomous In	nstitute)								
	Department of Computer Science and Engineering											
Syllab	us	of Final Year.	B. Tech. (Honours* in Cl	oud Computing) Se	mester-VIII							
Course Code:	C	SE973	Credits: 0-0-2									
Course: Lab :	M	ini Project	Term Work: 25	Marks								
Teaching Sche	em	e:	Practical: 25 Ma	arks								
Practical: 04 H	Irs	s/week										
Prerequisite	V	Veb Programm	ning and Computer Netwo	ork								
•	Т	o carry out a n	nini project in Cloud Com	puting.								
	E	ach student wi	ll have a faculty mentor t	o guide them.								
	T	There will be three reviews with below mentioned details:										
										Mark Weightage		
		Review #	Requirement	Internal	External							
		0	Idea Presentation/ Selection	-	-							
		1	Literature Review / Proposal for Project	10%	-							
		2	Proposed System Design/ Model	20%	-							
Guidelines		3	Implementation and Demonstration	20%	-							
		End Semester Exam	Final Viva-Voce and Project Demonstration	-	50%							

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Note:

- 1. No additional fees will be charged for students opting for Honours/ Minor Degree
- 2. All the courses in the Honours/ Minor will be conducted in offline mode.
- 3. Re-examination is not applicable in Honours and Minor Scheme. Student failing in any of the Minor or Honours courses, at any stage will be discontinued from the Scheme.
- Examination Scheme and Passing rules will be as per the academic rules and regulations of B. Tech.

Maharashtra Institute of Technology (An Autonomous Institute)

Proposed Honours* in ElectricVehicles Major Disciplines in Bachelor of Electrical Engineering Bachelor of Mechanical Engineering (With effect from A.Y. 2022-23)

	Honours* in Electric Vehicles															
	Course	Course		Teachi	ng		Exan	ninatior	n Sche	eme a	nd M	arks		Cred	lit Sch	eme
	Code			Schem	ie											
			Ho	ours / V	Veek											
								al	int	в						
er						1-1	n-1	ern	ssme	Exa						
nest			y	I	Ч	Cxan	txan	s Int	Asse	ster	ik		arks			dit
Ser			leor	oria	ctica	em E	em F	uou	ers A	eme	wor	cal	1 M	y/ al	cal	Cre
ar &			ĮT	Tut	Pra	id-Se	id-S	ntin alua	ache	S-bi	erm	ract	rota	heor itori	ract	otal
Ye	EED001	Fundamentals of	04				15		e 10	50	T	Ρ	100		Ρ	
	EED901	Fundamentals of	04			15	15	10	10	50			100	04		04
	EED071	Lab:			02						25		25		01	01
	EED9/1	Lau. Eundemontals of			02						23		23		01	01
SYIV		Flactric Vahicles														
		Total	04		02			100			25		125	04	01	05
		Totai	04	-	02			100			23		125	04		05
	EED002	Electric Vehicles	04	1	1	15	15	10	10	50	1		100		Creat	ts=05
	EED902	Auchite stress	04			15	15	10	10	50			100	04		04
TY V		Tatal	04					100					100	04		0.4
		1 otal	04	-	-			100					100	04		04
		Electric drives and	04	1	1	15	15	10	10	50	1		100		Creat	LS=04
	EED903	electric drives and	04			15	15	10	10	50			100	04		04
		Controllers for														
		Lab: Electric			02						25		25		01	01
	EED972	drivesend			02						23		23		01	01
TY VI		antrollarafor														
		Electric														
		Vahielas														
		Total	04		02			100			25		125	04	01	05
		Total	04		02			100			23		125	Total	Credit	05 s=05
	DED 00 -		<u>.</u>	1	1			4.6	10		1		100		Creui	
	EED904	Energy	04			15	15	10	10	50			100	04		04
Final		Storage														
B. Tech.		Systems for														
VII		Electric -														
		Vehicles	0.4					100					100	0.4		0.1
		Total	04					100					100	04		04
														Tota	al Cred	lits=04
Final	EED97	Mini Project			04						25	25	50		02	02
B. Tech.	3															
VIII		Total			04						25	25	50		02	02
	1		<u>. </u>	1	1	1	1	1	1	1	1	1	1	Total	Credi	ts=02
	Total Credit for Semester IV+V+VI+VII +VIII= 20															

	Maharashtra Institu	ite of Technology, Aurangabad					
	(An Autonomous Institute)						
	Department	of Electrical Engineering					
S	yllabus of SY B. Tech. (Hor	nours* in Electrical Vehicles) Semester-IV					
Course Code: E	ED901	Credits: 4-0-0					
Course: Fundan	nentals of Electric	Mid Semester Examination-I: 15 Marks					
Vehicles		Mid Semester Examination-II: 15 Marks					
Teaching Scher	ne:	Continuous Internal Evaluation:10 Marks					
Theory: 4 Hrs/	week	Teacher Assessment: 10 Marks					
Tutorial: 00 Hr	/week	End Semester Examination: 50 Marks					
		End Semester Examination (Duration): 2 Hrs					
Prerequisite	Student Should have Know	ledge of basic electrical principle and electrical					
	technology.						
Objectives	1.Understanding of basic pr	rinciples, operation, performance of Electric vehicles					
	Electric Vehicles						
Unit-I	History, Components of Electric Vehicle, General Layout of EV, EV classification						
	Comparison with Internal combustion Engine: Technology, Advantages &						
	Disadvantages of EV, Over	view of Tesla car. (6 Hrs)					
	Hybrid Electric Vehicles						
Unit-II	History, Components of Hybrid Electric Vehicle , General Layout of Hybrid EV,						
	Comparison with Electric Vehicles, Advantages & Disadvantages of Hybrid EV,						
	Overview of Toyota prius.	(5 Hrs)					
	Vehicle Fundamentals						
	Vehicle resistance, Types:	Rolling Resistance, grading resistance, Aerodynamic					
Unit-III	drag vehicle performance,	Calculating The Acceleration Force, maximum speed,					
	Finding The Total Tracti	ive Effort, Torque Required On The Drive Wheel,					
	Transmission: Differential,	clutch &gear box, Braking performance.					
		(6 Hrs)					
	Motors						
Unit-IV	Principle and working of D	C motor, Characteristics and Types of DC Motors-					
	Overview (Speed torque ch	aracteristics) of Permanent Magnet motor, BLDC					
	Motor, Induction motor. Co	omparison of all motors. (7 Hrs)					
	Converts						
Unit-V	Introduction of DC-DC, A	C-AC ,AC-DC,DC-AC, four-quadrant operation, Driver					
	circuits.	(6 Hrs)					

	Energy Management Strategies									
	Introduction to energy management strategies used in electric vehicles, classification									
Unit-VI	of different energy management strategies, comparison of different energy									
	manager	ment strategies.								
	INDIAN	N and GLOBAL Scenario								
	Technol	Technology Scenario, Market Scenario, Policies and Regulations, Payback and								
	commer	cial model, Payback and co	mmercial model, Poli	ces in India						
					(6Hrs)					
References	Sr. No.	Title	Author	Publication	Edition					
	1.	Electric Vehicle	John Lowry and		2nd					
		Technology Explained	James Larminie	Wiley	Edition					
		Modern Electric, Hybrid		Power						
		Electric, and Fuel Cell	Mehrdad Ehsaniand	Electronics	Second					
	2.	Vehicles: Fundamentals,	Yimin Gao	and	Edition					
		Theory, and Design		Applications						
				Series						
		Electric and Hybrid								
	3.	Vehicles: Design	Iqbal Husain							
		Fundamentals								
	4.	Build Your Own Electric	Seth Leitman and							
		Vehicle	Bob Brant							
		Introduction to Hybrid								
	5.	Vehicle System	Wei Liu							
		Modeling and Control								

	Maharashtra Institute of Technology, Aurangabad								
	(An Autonomous Institute)								
	Department of Electrical Engineering								
	Syllabus of SY B. Tech. (Honours* in Electrical Vehicles) Semester-IV								
Course Cod	le:	EED971	Credits: 0-0-1						
Course: Lal	oor	atory Fundamentals of Electric	Term Work: 25 Marks						
Vehicles			Practical: Nil						
Teaching S	Sch	eme:							
Practical: 2	Hr	rs/week							
Objectives	:	Understanding and Performing va	arious measuring instruments through practical						
		demonstrations.							
	:	Perform any 8 Experiments.							
		List of Practical:							
		1. Experiment for conversion of 1	DC to DC voltage using converter.						
		2. Simulation for AC to AC conv	rersion						
		3. Simulation for AC to DC conv	ersion						
		4. Simulation for DC to AC conv	ersion						
		5. Study of 3 phase Induction mo	tor.						
		6. Speed control of DC motor us	ing IGBT.						
		7. To perform speed reversal of I	DC shunt motor						
		8. Study of various elements of	transmission systems (clutch, differentials,						
		gearbox etc.)							
		9. Calculate and compare the br	ake power, torque and mechanical efficiency of						
		IC Engine and Electrical Mot	or of same configuration						
List of		10. Study of various types of bral	king systems						
Practical		11. Case study of Tesla car.							
		12. Case study of Toyota Prius.							

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above

Maharashtra Institute of Technology, Aurangabad								
(An Autonomous Institute)								
	Department of Electrical Engineering							
S	Syllabus of TY B. Tech. (Honours* in Electrical Vehicles) Semester-V							
Course Code: I	EED902	Credits: 4-0-0						
Course: Electric	c Vehicles Architecture	Mid Semester Examination-I: 15 Marks						
Teaching Scher	ne:	Mid Semester Examination-II: 15 Marks						
Theory: 4 Hrs/	week	Continuous Internal Evaluation:10 Marks						
Tutorial: 00 Hr	/week	Teacher Assessment: 10 Marks						
		End Semester Examination: 50 Marks						
		End Semester Examination (Duration): 2 Hrs						
Prerequisite	Basic configuration of B	atteries, Types of Batteries, Basic concepts of Engineering						
	Drawings, Basic Electric	cal motor drives, Fundamentals of Mechanical and						
	Electrical Engineering							
	To design understand the	e chassis of electric vehicle to reduce a cost and weight.						
Objectives	To allocate a proper loca	ation of different components used in electric vehicle to						
	make excellent appearance in view of all technical factors.							
	Basic Architecture of Hybrid Drive Trains and Analysis of Series Drive Train							
	Hybrid Electric Vehicles (HEV): The gasoline ICE and battery, Diesel ICE and							
	battery, Battery and FC, Battery and capacitor, Battery and flywheel, Battery and							
	battery hybrids. Energy use in conventional vehicles, Energy saving potential of							
TL	hybrid drive trains: Regenerative braking, More efficient operation of the ICE,							
Unit-1	including reduction of idle, Smaller ICE, Potential for higher weight, Electrical							
	losses. Various HEV	configurations and their operation modes: Series						
	configuration, Parallel	configuration, Series-parallelconfiguration, Complex						
	configuration.							
	Electric Vehicles charg	ing station						
	Types of charging statio	n, Selection and Sizing of charging station, Components of						
	charging station, Single	line diagram of charging station, Charging Station						
	Placement for Electric V	Vehicles. (6 Hrs.)						
	Power Flow in HEVs P	Part-I						
	Power Flow Control: C	optimal ICE operating point, Optimal ICE operating line,						
	Safe battery voltage. Por	wer Flow Control in Series Hybrid: Mode 1, normal driving						
Unit II	or acceleration, Mode	2, light load, Mode 3, braking or deceleration, Mode 4,						
	vehicle at stop. Power F	Flow Control in Parallel Hybrid: Mode 1, start up, Mode 2,						
	normal driving, Mode 3, braking or deceleration, Mode 4, light load. (6 Hrs.)							

	Power Flow in HEVs Part-II						
	Power Flow Control in Series-Parallel Hybrid: Mode 1: At startup, Mode 2: During						
Unit-III	full throttle acceleration, Mode 3: During normal driving, Mode 4: During normal						
	braking or deceleration, Mode 5: To charge the battery during driving, Mode 6:						
	When the vehicle is at standstill, The operating modes of EM dominated system,						
	Power Flow Control Complex Hybrid Control: Mode 1: During startup, Mode 2:						
	During full throttle acceleration (6 Hrs.)						
	Torque Coupling and Analysis of Parallel Drive Train						
	Introduction to Parallel Hybrid Electric Drive Train, Torque Coupling, Speed						
	Coupling, Post-Transmission Parallel Hybrid Drive Train with Torque Coupling,						
Unit-IV	Pre-Transmission Parallel Hybrid Drive Train with Torque Coupling, Parallel						
	Hybrid Drive Train with Speed Coupling: Hybrid traction, Engine alone traction,						
	Motor alone traction, Regenerative braking, Battery charging from the ICE.						
	Complex Hybrid Drivetrain. (6 Hrs.)						
	Basic Architecture of Electric Drive Trains-I						
	Electric Vehicle (EV) Configuration: Electric propulsion-The electronic controller,						
	Power converter, Electric Motor (EM), Mechanical transmission, Driving wheels.						
	Energy source-The energy source (battery, fuel cell, ultra capacitor), Energy						
Init V	management unit, Energy refueling unit. Auxiliary system- Power steering unit,						
Umit- v	Temperature control unit, Auxiliary power supply. EV alternatives based on						
	drivetrains: EV configuration with clutch, gearbox and differential-I, EV						
	configuration without clutch and gearbox, EV configuration with clutch, gearbox						
	and differential-II. (6 Hrs.)						
	Basic Architecture of Electric Drive Trains-II						
	EV configuration with two EM, EV configuration with in wheel motor and						
	mechanical gear, EV configuration with in wheel motor and no mechanical gear.						
	EV alternatives based on power source configuration: EV configuration with						
I init-VI	battery source, EV configuration with two battery sources, EV configuration with						
	battery and fuel cell source, EV configuration with multiple energy sources, EV						
	configuration with battery and capacitors sources, EV configuration with battery						
	and flywheel sources, Single and Multi-motor drives, In wheel drives (6 Hrs.)						

	Sr. No.	Title	Author	Publication	Edition	
References	1.	Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals,	M. Ehsani	CRC Press,2005		
		Theory and Design				
	2.	Electric and Hybrid	I. Husain	CRC Press,	2nd ed.	
		Electric Vehicles		2003	edition	
	3	Vehicle Propulsion	L. Guzzella			
		Systems: Introduction to	is: Introduction to and A. Springer,2007		fifth edition	
		Modeling and	id Sciarretta			
		Optimization,				
	4.	Automotive	G. Lechner			
		Transmissions:	and H.	Springer,1999	Third	
		Fundamentals, Selection,	Naunheimer		edition	
		Design and Application				
	5.	Modern Electric Vehicle	C. C. Chan	Oxford		
		Technology	and K.	Science	VolumeII	
			T. Chau	Publication,		
				2001		

	Maharashtra Institute of Technology, Aurangabad							
	(An Autonomous Institute)							
	Department of Electrical Engineering							
S	Syllabus of TY B. Tech. (H	Ionours* in Electrical Vehicles) Semester-VI						
Course Code: E	EED903	Credits: 4-0-0						
Course: Electric	c drives and	Mid Semester Examination-I: 15 Marks						
controller for E	lectric Vehicles	Mid Semester Examination-II: 15 Marks						
Teaching Scher	me:	Continuous Internal Evaluation:10 Marks						
Theory: 4 Hrs	/week	Teacher Assessment: 10 Marks						
Tutorial: 00 H	c/week	End Semester Examination: 50 Marks						
		End Semester Examination (Duration): 2 Hrs						
Prerequisite	D.C machines, power ele	ctronics, utilization of electrical energy						
	1)To understand about by	orige of motors and controller						
Objectives	2)To understand about da	ives and control						
Objectives		ives and control.						
	Electric motors							
	Types of Motors, Selection and sizing of Motor, RPM and Torque calculation of							
Unit-I	motor Motor Controlle	ers Component sizing, Physical locations, Mechanical						
	connection of motor Electrical connection of motor (6Hrs.)							
	Control Unit and Control Strategies							
	Controller Overview,	Controller Overview, Switch Controller, Solid-State Controller, Electronic						
	Controllers, AC Controller, DC Motor Controller- The Lesson of the Jones Switch,							
Unit-II	An Off-the-Shelf Curtis	An Off-the-Shelf Curtis PWM DC Motor Controller, AC Controllers, Today's Best						
	Controller Solution, Z	Illa Controller (One of the Best DC Controller for						
	Conversions) ZAPI., Co	ntrol Strategies, Max. SOC-of-PPS Control Strategy,						
	Thermostat Control Strat	egy (Engine-On–Off) (6 Hrs.)						
	Electric Vehicle Drives							
	Configurations of Electr	The Vehicles, Performance of Electric Vehicles, Traction						
Unit-III	Motor Characteristics,	Tractive Effort and Transmission Requirement, Vehicle						
	Performance, Tractive Ef	fort in Normal Driving, Energy Consumption.						
		(6 Hrs.)						
	Concept of Hybrid Elec							
	Concept of Hybrid Elec	tric Drive Trains, Architectures of Hybrid Electric Drive						
Unit-IV	Trains Series Hybrid Ele	ecuric Drive Trains, Parallel Hybrid Electric Drive Trains,						
	1 orque-Coupling, Parall	ei Hybrid Electric DriveTrains, Speed-Coupling Parallel						
	Hybrid Electric DriveTrains, Torque-Coupling and Speed-Coupling Parallel Hybrid							

	Electric Drive Train. (6 Hrs.)												
	Electric	Electric Propulsion Systems											
Unit-V	DC Mot	or Drive, Principle of	Operation and Pe	erformance, Combine	d Armature								
	Voltage	and Field Control, Chop	per Control of D	C Motors, Multi quad	rant Control								
	of Chop	per-Fed, DC Motor Dri	ves, Two-Quadra	ant Control of Forwar	d Motoring								
	and Reg	enerative Braking, Sing	le Chopper with	a Reverse Switch, Cl	ass C Two-								
	Quadran	t Chopper, Four-Quad	rant Operation,	Induction Motor Dr	ives, Basic								
	Operatio	n Principles of Induct	ion Motor, Stea	dy-State Performanc	e, Constant								
	Volt/Hertz Control, Power Electronic Control, Field Orientation Control, Field												
	Orientation Principle, Control, Direction Rotor Flux Orientation Scheme, Indirect												
	Rotor Flu	ux Orientation Scheme,	Voltage Source In	verter for FO, Voltage	e Control in								
	Voltage	Source Invert, Current C	Control in Voltage	e Source Inverter.	(8 Hrs.)								
Unit-VI	Perman	ent Magnetic Brush-Le	ss DC Motor Dri	ives and Case studies	5								
	Basic P	rinciples of BLDC M	otor Drives, BI	LDC Machine Cons	truction and								
	Classific	ation Properties of PM	Material, Alnico	o, Ferrites, Rare-Eart	h PMs, case								
	studies.				(4 Hrs.)								
References	Sr. No.	Title	FitleAuthorPublication										
		Modern Electric,											
	1.	HybridElectric and	M. Ehsani	CRC									
		Fuel Cell Vehicles:		Press,2005									
		Fundamentals,											
		Theory and Design											
		Engine control											
		strategyfor a series											
		hybrid electric	C.G. Hochgraf,	Warrendale, PA,	2nd ed.								
	2.	vehicle	M.J. Ryan, and	2002	Edition								
		incorporating	H.L. Wiegman										
		load- leveling and											
		computer											
	controlled.												
		energy management,											
	3	Build your own	Seth Leitman	MC graw hill	Second								
		electric	Bob		edition								
		vehicle	Brant										

	Automotive			
4.	Transmissions:	G. Lechner and	Springer,1999	Third
	Fundamentals,	H.Naunheimer		edition
	Selection,			
	Design and			
	Application			
			Oxford Science	
5.	Modern Electric	C. C. Chan and	Publication,	VolumeII
	VehicleTechnology	К.	2001	
		T. Chau		

Maharashtra Institute of Technology, Aurangabad										
	(An Autonomous Institute)									
Department of Electrical Engineering										
	Syllabus of TY B. Tech. (Honours* in Electrical Vehicles) Semester-VI									
Course Cod	le: EED972	Credits: 0-0-1								
Course: Lab	poratory Electric drives and	Term Work: 25 Marks								
controller fo	or Electric Vehicles	Practical: Nil								
Teaching Se	cheme:									
Practical: 2	2 Hrs/week									
Objectives	1. Develop the student's simulati	on skills in Electric drives and controller.								
	2. Analyze the important paramet	ters for Electric drives and controller.								
	Perform any 8 Experiments.									
	1. Demonstration of wiring layout of electric vehicle.									
	2. Current/Voltage Control of an Electric vehicle.									
	3. Control Circuit of induction motor.									
	4. Demonstration of Controllers & Actuators in an Electric Vehicle									
	5. V/f control of three-phase induction motor.									
List of	6. Speed control of BLDC motor in two-wheeler.									
Practical	7. Speed control of Switched Reluctance Motors (SRM) motor in three-wheeler.									
	8. Simulation of Four quadrant operation of three-phase induction motor.									
	9. MOSFET based step up and s	step-down chopper.								
	10. VI Characteristics of SCR, IC	BT & MOSFET.								
	11. Three phase IGBT based PWM inverter control of induction motor.									
Reference	1. MATLAB/SIMULINK example 1. MATLAB/SIMULINK ex	nples								
	2. Power Electronics: Circuits,	Devices, and Applications- M.H. Rashid,								
	Pearson Education, PHI 3rd	edition, New Delhi 2004.								
	3. https://www.researchgate.ne	t/publication/334689540_Charging_Station_Plac								
	ement_for_Electric_Vehicle	s_a_Case_Study_of_Guwahati_city_India,								
	Sanchari Deb, https://ieeexp	lore.ieee.org/document/8772029, 2019.								
	4. A comprehensive review on	recent progress in aluminum-air batteries								
	5. <u>https://ieeexplore.ieee.org/d</u>	ocument/7392682								

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Maharashtra Institute of Technology, Aurangabad								
	(An Autonomous Institute)							
	Department of Electrical Engineering							
Sy	llabus of B. Tech. Final (Hor	nours* in Electrical Vehicles) Semester-VII						
Course Code: H	EED904	Credits: 4-0-0						
Course: Energy	Storage Systems for Electric	Mid Semester Examination-I: 15 Marks						
Vehicles		Mid Semester Examination-II: 15 Marks						
Teaching Schen	ne: Theory: 4 Hrs/week	Continuous Internal Evaluation:10 Marks						
Tutorial: 00 Hr	/week	Teacher Assessment: 10 Marks						
		End Semester Examination: 50 Marks						
		End Semester Examination (Duration): 2 Hrs						
Prerequisite	Student should have knowle	dge of basic battery characteristics, basic electrical and						
	basic converters.							
	1. Identify suitable ener	rgy storage system for Electric Vehicle.						
Objectives	2. Compare different er	nergy storage system.						
	3. Explain use of energy management system for energy storage systems.							
	Electrochemical Battery 1	:						
	Introduction to Electrochemical Battery, Electro Chemical Reactions, Battery							
∐nit-I	capacity, Discharge Rate, SOC, SOD, SOH, DOD, Thermodynamic Voltage,							
	Specific Energy, Specific Power, Energy Efficiency, Battery Technologies (used in							
	Tesla Car), Lead-acid batter	y. (6 Hrs)						
	Electrochemical Battery 2:							
Unit-II	Nickel based battery (Nickel Metal Hydride), Lithium battery (Li-ion and Li-							
	Polymer), Introduction to graphene battery, Compare all Electrochemical batteries.							
		(6 Hrs)						
	Fuel Cell:							
	Overview of key fuel cell t	echnologies- Various types of fuel cells, Materials for						
Unit-III	electrodes, electrolytes and other components, Working mechanisms, Hydrogen							
	generation and storage: limi	tations, Recent progress in fuel cells, Safety issues and						
	cost expectation and life cyc	ele analysis of fuel cells. (5 Hrs)						
	Ultra-capacitors:							
	Features of Ultra capacit	ors, Basic principle operation of Ultra capacitors,						
	Fundamentals of Electroc	hemical Supercapacitors, Electrode and electrolyte						
Unit-IV	interfaces and their capacitation	ances, Charge-Discharge characteristics, Energy/power						
	density, Design, Fabrication	n, Ultra capacitor Technologies, Graphene based Ultra						
	capacitor, Introduction to F	lywheel, Hybridization of different energy storage						
	devices. (7 Hrs)							

	Energy	Management System:										
	In vehicle networks- CAN. Energy Management Strategies: Introduction to energy											
X T . • 4 X 7	management strategies with optimization techniques used in hybrid and electric											
Unit-V	vahiolos classification of different energy management strategies comparison of											
	different energy management strategies and implementation issues of energy											
	unteren	a energy management s	strategies and m	ipienientation issues								
	manage											
	Electric Vehicles Charging Station:											
	Types of	of charging station, Select	ion and Sizing or	f charging station, Con	nponents of							
Unit-VI	chargin	g station, Single line	diagram of cha	rging station, Chargi	ng Station							
	Placem	Placement for Electric Vehicles: A Case Study of Guwahati city, India, Case Study										
	of Tesla. (5 Hrs)											
References	Sr. No.	Title	Author	Publication	Edition							
	1.	Electric and		CRC Press,2003	Second							
		HybridVehicles:	Iqbal Hussein,		edition							
		Design										
		Fundamentals										
	2.	Modern Electric,	Mehrdad Ehsani,									
		HybridElectric and	YimiGao,	Design, CRCPress	2004							
		Fuel Cell Vehicles:	Sebastian									
		Fundamentals,	E. Gay, Ali									
		Theory and	Emadi,									
	3	Electric Vehicle	James Larminie,	Wiley	2003							
		Technology Explained,	John									
			Lowry,									
	4.	Super capacitors-	F. Beguin and E.	Wiley- VCH Verlag								
		Materials, Systems, and	Frackowiak	GmbH	2013							
		Applications		& Co.								
	5.	Fuel Cells and Hydrogen:	V. Hacker, S.	Elsevier	2018							
		From Fundamentals to	Mitsushima									
		Applied Research	(sdE.)									

Maharashtra Institute of Technology, Aurangabad											
		(An Autonoi	nous Institute	e)							
		Department of Ele	ectrical Engin	neering							
Sy	Syllabus of Final Year B. Tech. (Honours* in Electrical Vehicle) Semester-VIII										
Course Cod	le: EED973		Credits: 0-0)-2							
Course: Mi	ni Project		Term Work	: 25 Marks							
Teaching S	cheme:		Practical: 2:	5 Marks							
Practical: 4	Hrs/week										
Prerequisit	Fundamenta	ls of electrical drives,	motors and c	ontrollers used in ele	ectrical drives						
e											
	To carry out	t a min project and sir	nple prototyp	be in the area of inter	rest based on the						
	knowledge	gained in Electrical	vehicles fror	n undergraduate and	d first semester.						
	Every individual student will be assigned a faculty to guide them. There will be										
	three major reviews which will be carried out as listed below.										
	Review #	Requirement		Mark Weightage							
				Internal	External						
	0	Area/Title		-	-						
		selection									
	1	Literature review/Pro	posal	10%	-						
		for the Project									
List of	2	Mathematical		20%	-						
Practical		modelling /CircuitDe	sign								
	3	Final		20%	_						
		simulation/Hardware									
		presentation									
	End	Final Viva-Voce and	project	_	50%						
	Semester	demonstration	_ •								
	Exam										

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Note:

- 1. No additional fees will be charged for students opting for Honours/ Minor Degree
- 2. All the courses in the Honours/ Minor will be conducted in offline mode.
- 3. Re-examination is not applicable in Honours and Minor Scheme. Student failing in any of the Minor or Honours courses, at any stage will be discontinued from the Scheme.
- Examination Scheme and Passing rules will be as per the academic rules and regulations of B. Tech.

Maharashtra Institute of Technology (An Autonomous Institute)

Proposed Honours* in Data Science Major disciplines in Bachelor in Electronics and Computer Engineering Computer Science and Engineering Computer Science and Design (With effect from A.Y. 2022-23)

			Но	nou	rs* i	n [Data	a Sc	ienc	e						
	Course Code	Course	Н	Teachi Schen ours/W	ng 1e Veek		Examination Scheme and Marks					1	Cre	edit S	cheme	
Year & Semester			Theory	Tutorial	Practical	Mid-Sem Exam-1	Mid-Sem Exam-1	Continuous Internal Evaluation	Teachers Assessment	End-Semester Exam	Term work	Practical	Total Marks	Theory / Tutorial	Practical	Total Credit
SY IV	ECE901	Data Sciences and Visualization	04			15	15	10	10	50			100	04		04
	ECE971	Data Sciences and Visualization Laboratory			02						25		25		01	01
		Total	04	-	02			100)		25		125	04	01	05
		1			1		r	1	1				То	tal (Credi	ts =05
TYV	ECE902	Statistical Foundations for Data Science	04			15	15	10	10	50			100	04		04
		Total	04	-	-			100)				100	04		04
		·											r	Fotal (Credit	ts =04
TY VI	ECE903	Machine Learning	04			15	15	10	10	50			100	04		04
	ECE972	Machine Learning Laboratory			02					-	25		25		01	01
		Total	04		02			100)		25		125	04	01	05
	•	•	1	•		_	1	1	1				Т	'otal C	redit	s = 05
Final B.Tech VII	ECE904	Artificial Intelligence for Data Analytics	04			15	15	10	10	50			100	04		04
		Total	04					100					100	04		04
													T	'otal C	redit	s = 04
Final B. Tech.	ECE974	Mini Project			04					-	25	25	50		02	02
VIII		Total			04					-	25	25	50		02	02
				Tatal	Cue ell	4 6					/11 - \/		T o	'otal C	redit	s = 02
				i otal	Cred	it 10	ser	nester	· IV+V	+ 1 + 1	/II +V	111= 2	U			

`

Maharashtra Institute of Technology, Aurangabad				
	(An Autonomous Institute)			
	Department of Electronics and Computer Engineering			
		Syllabus of SY B. Tech. (1	Honours* in Data Science) Semester-IV	
Course Code	e: E C	CE901	Credits: 4-0-0	
Course: Data	a Sc	iences and	Mid Semester Examination-I: 15 Marks	
Visualization	1		Mid Semester Examination-II: 15 Marks	
Teaching Sch	hem	le:	Continuous Internal Evaluation:10 Marks	
Theory: 4 H	[rs/w	veek	Teacher Assessment: 10 Marks	
Tutorial: 00	Hr/	week	End Semester Examination: 50 Marks	
			End Semester Examination (Duration): 2 Hrs	
Prerequisite		Basic knowledge of mathe	ematics and python programming.	
		The course will introduce students to the fundamental data visualization concepts		
Objectives	:	required for a program in a	data science.	
		Introduction to Data Analytics		
		Definition and example.		
		Data Analysis Process: Data Requirement Specifications, Data Collection, Data		
Unit-I	:	Processing, Data Analysis, Infer and Interpret Results.		
		Data Analysis Methods: Qualitative Analysis, Quantitative Analysis, Text analysis,		
		Statistical analysis, Diagnostic analysis, Predictive analysis.		
			(6 Hrs)	
		Working with Data		
T		Data Literacy, Data acquisi	tion, Data examination, Data transformation, Data	
Unit-11		exploration.		
			(6 Hrs)	
		Data Analysis Technique	es and Tools	
		Techniques based on Math	nematics and Statistics, Techniques based on Artificial	
		Intelligence and Machine	Learning, Techniques based on Visualization and Graphs	
Unit-III	:			
		Introduction to Data Analy	ysis Tools: Excel, Tableau, Power BI, Fine Report, R &	
		Python, SAS.		
			(6 Hrs)	
Introduction to Data Visualization and Data Representation		ualization and Data Representation		
		Basics of data visualizatio	n, Principles of good visualization design, Data	
Unit-IV	_	visualization design workf	flow,	
	:	Introduction to visual enco	oding, Chart types, Chart families, Categorical,	

		Hierarchical, Relational, Temporal and Spatial.	
		(8 Hrs)	
Unit-V	:	Interactivity Features of Interactivity, Data adjustments, View adjustments, Features of Annotation, Project Annotation, Chart Annotation, Features of colours, Data legibility, Features of Composition, Project Composition, Chart Composition. (6 Hrs)	
Unit-VI	:	Graphical analysis with gnuplot What is gnuplot and its limitation, Data analysis and visualization concepts, Simple plot, saving and exporting with gnuplot Fundamental graphical methods, Relationships, Counting statistics, Ranked data, Multivariate data, Core principle of graphical analysis, A case study in iteration: car data. (8 Hrs)	
Reference books/ Text books	:	 Andy Kirk, Data Visualization A Handbook for Data Driven Design, Sage Publications, 2016 Philipp K. Janert, Gnuplot in Action, Understanding Data with Graphs, Manning Publications, 2010 	

Maharashtra Institute of Technology, Aurangabad				
(An Autonomous Institute)				
	Department of Electronics and Computer Engineering			
		Syllabus of SY B. Tech. (Honours* in Data Science) Semester-IV		
Course Code: E	CE	Credits: 0-0-1		
Course: Laboratory Data Sciences and Visualization Term Work: 25 Marks				
Teaching Scheme:		Practical: Nil		
Practical: 2 Hrs	/w	eek		
Prerequisite		Basic knowledge of mathematics and Python/R programming/Tableau.		
		The course will introduce students to the fundamental data visualization concepts		
Objectives	:	required for a program in data science		
		1. Introduction to programming language for data analytics: Python/R		
		2. Introduction to different libraries in Python/R		
		3. To Perform All Arithmetic and logical operations with Python/R		
		4. To perform basic data frame analysis using Python/R		
		5. Defining data visualization; Visualization workflow		
		6. Data Representation: chart types: categorical, hierarchical, relational, temporal & spatial		
Laboratory		7. 2-D: bar charts, Clustered bar charts, dot plots, connected dot plots, pictograms,		
Experiments	:	proportional shape charts, bubble charts, radar charts, polar		
		8. Charts, Range chart, Box-and-whisker plots, univariate scatter plots, histograms		
		word cloud, pie chart, waffle chart, stacked bar chart, back-to-back bar chart,		
		treemap and all relevant 2-D charts.		
		9. 3-D: surfaces, contours, hidden surfaces, pm3d coloring, 3D mapping;		
		10. Multi-dimensional data visualization; Graph data visualization; Annotation;		
		11. Case Study: Understanding basics of Recommendation Engines (with case		
		study).		
Reference		1. Andy Kirk, Data Visualization A Handbook for Data Driven Design, Sage		
books/ Text		Publications, 2016		
books		2. Philipp K. Janert, Gnuplot in Action, Understanding Data with Graphs,		
	:	Manning Publications, 2010.		

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Maharashtra Institute of Technology, Aurangabad				
(An Autonomous Institute)				
	Department of Electronics and Computer Engineering			
		Syllabus of TY B. Tech. (Honours* in Data Science) Semester-V	
Course Code:	EC	CE902	Credits: 4-0-0	
Course: Statis	stica	l Foundations for Data	Mid Semester Examination-I: 15 Marks	
Science			Mid Semester Examination-II: 15 Marks	
Teaching Sch	eme	:	Continuous Internal Evaluation:10 Marks	
Theory: 4 Hr	s/w	eek	Teacher Assessment: 10 Marks	
Tutorial: 00	Hr/v	veek	End Semester Examination: 50 Marks	
			End Semester Examination (Duration): 2 Hrs	
Prerequisite		Basic knowledge of statist	tics and probability.	
Objectives		The course will gives stud	lents to the fundamental mathematical concepts required	
Objectives	•	for a program in data scien	nce.	
		Introduction		
		Measures of central tendency, mean median mode, measures of dispersion, means		
		and standard deviation.		
		Probability Review		
		Sample Spaces, Conditional Probability and Independence, Density Functions,		
Unit-I	:	Expected Value, Variance, Joint, Marginal, and Conditional Distributions, Bayes'		
		Rule, Bayesian Inference, Convergence and Sampling, Sampling and Estimation,		
		Probably Approximately Correct (PAC), Concentration of Measure, Importance		
		Sampling.		
			(8 Hrs.)	
		Linear Algebra Review		
		Vectors and Matrices, Ad	ddition and Multiplication, Norms, Linear Independence,	
		Rank,		
Unit-II	:	Inverse, Orthogonality, Di	stances and Nearest Neighbors, Metrics, Lp Distances and	
		their Relatives, Distances for Sets and Strings, Modeling Text with Distances,		
		Similarities, Locality Sensitive Hashing.		
			(6 Hrs.)	
		Linear Regression		
		Simple Linear Regression	, Linear Regression with Multiple Explanatory Variables,	
Unit III		Polynomial Regression,	Cross Validation, Regularized Regression, Functions,	
Unit-III	:	Gradients, Gradient Descent, Fitting a Model to Data, Least Mean Squares Updates		
		for Regression, Decompos	sable Functions.	

		(6 Hrs.)
11		Principal Component Analysis
		Data Matrices, Singular Value Decomposition, Eigenvalues and Eigenvectors,
		The Power Method, Principal Component Analysis, Multidimensional Scaling,
	•	Clustering, Voronoi Diagrams, Delaunay Triangulation, Connection to Assignment-
		based Clustering, Hierarchical and k means Clustering.
		(8 Hrs.)
		Classification
Unit V		Linear Classifiers, Perceptron Algorithm, Kernels, The Dual: Mistake Counter,
Umt-v	•	Feature Expansion, Support Vector Machines, KNN Classifiers, Neural Networks.
		(6 Hrs.)
		Graphs
	:	Markov Chains, Ergodic Markov Chains, Metropolis Algorithm, PageRank,
Unit-VI		Spectral Clustering on Graphs, Laplacians and their Eigen-Structure, Communities
		in Graphs, Preferential Attachment, Betweenness, Modularity.
		(6 Hrs.)
		1. B. L. S. Prakasa Rao, A First Course in Probability and Statistics, World
		Scientific/Cambridge University Press India, 2009.
Reference		2. R. V. Hogg, J. W. McKean and A. Craig, Introduction to Mathematical Statistics,
books/ Text		6th Ed., Pearson Education India, 2006.
books	•	3. G. Strang (2016). Introduction to Linear Algebra, Wellesley-Cambridge Press,
o o o indo		Fifth edition, USA.
		4. Bendat, J. S. and A. G. Piersol (2010). Random Data: Analysis and Measurement
		Procedures. 4th Edition. John Wiley & Sons, Inc., NY, USA:

Maharashtra Institute of Technology, Aurangabad				
(An Autonomous Institute)				
	Department of Electronics and Computer Engineering			
		Syllabus of TY B. Tech. (I	Honours* in Data Science) Semester-VI	
Course Code:	EC	CE903	Credits: 4-0-0	
Course: Macl	nine	Learning	Mid Semester Examination-I: 15 Marks	
Teaching Sch	ieme	:	Mid Semester Examination-II: 15 Marks	
Theory: 4 Hrs/week		eek	Continuous Internal Evaluation:10 Marks	
Tutorial: 00	Hr/v	veek	Teacher Assessment: 10 Marks	
			End Semester Examination: 50 Marks	
			End Semester Examination (Duration): 2 Hrs	
Prerequisite		Basic knowledge of mathe	ematics, statistics and programming language (Python/R).	
Objectives	:	To introduce students to the	he basic concepts and techniques of Machine Learning.	
		Introduction		
		Learning - Types of machine learning - Supervised learning - The brain and the		
Unit I		neurons, Linear Discriminants -Perceptron - Linear Separability -Linear Regression		
Unit-1	•	- Multilayer perceptron – Examples of using MLP - Back propagation of error.		
		Suggested Activities: Design a Multilayer Perceptron for Rain Forecasting system.		
			(6 Hrs.)	
		Classification Algorithms		
		Decision trees - Constructin	ng decision trees - Classification of regression trees -	
Unit-II		Regression example -		
		Probability and Learning: Turning data into probabilities - Some basic statistics -		
		Gaussian mixture models -	Nearest Neighbor methods.	
		Suggested Activities: Explore the Regression Examples in Machine Learning		
		(8 Hrs.)		
		The k Means algorithm	Vector Quantization's Linear Discriminant Analysis	
		Principal component analysis Easter Analysis Independent component analysis		
		Locally Linear embedding Iso man Loast squares entimization. Simulated		
Unit-III	:	annealing	g = 150 map -Least squares optimization - Simulated	
		Suggested Activities: Si	mulated annealing / Modelling on any data science	
		application	induced annearing / Woderining on any data science	
		upprioution.	(8 Hrs.)	
		Ontimization Techniques		
		The Genetic algorithm -	Genetic operators - Genetic programming - Combining	
		sampling with genetic programming - Markov Decision Process - Markov Chain		

Unit-IV	:	Monte Carlo methods: sampling – Monte carlo - Proposal distribution.		
		Suggested Activities: Design an Encryption algorithm using Genetic algorithm		
		(6 Hrs.)		
		Python for Machina Laarning		
		Raysean Networks Markov Random mcFields Hidden Markov Models Tracking		
Unit-V	:	methods		
		(6 Hrs.)		
		(0 III S.)		
		Python for MATLAB AND R users		
Unit-VI	:	Python: Installation - Python for MATLAB AND R users - Code Basics - Using		
		NumPy and MatPlotlib.		
		Suggested Activities: Design a simple application using NumPy and MatPlotlib.		
		(6 Hrs.)		
		1. Kevin P. Murphy, "Machine Learning – A probabilistic Perspective", MIT Pres,		
		2016.		
		2. Randal S, "Python Machine Learning, PACKT Publishing, 2016.		
		3. Ethem Alpaydin, "Machine Learning: The New AI", MIT Press, 2016.		
	4. Shai Shalev-Shwartz, Shai Ben-David, "Understanding Machine Lea			
		Theory to Algorithms", Cambridge University Press, 2014.		
		5. Sebastian Raschka, "Python Machine Learning", Packt Publishing Ltd, 2015		
	6. E. Alpaydin, Introduction to Machine Learning, 3rd Edition, Prentice Hall (In			
Reference	:	2015.		
books/ Text		7. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, 2nd Edn., Wiley		
books		India, 2007.		
		8. C. Bishop, Pattern Recognition and Machine Learning (Information Science and		
		Statistics). Springer, 2006.		
		9 S. O. Havkin, Neural Networks and Learning Machines 3rd Edition Pearson		
		Education (India) 2016		
		10 I Shawe-Taylor and Nello Christianini Kernel Methods for Pattern Analysis		
		Cambridge University Press, 2004.		

Maharashtra Institute of Technology, Aurangabad				
(An Autonomous Institute)				
Department of Electronics and Computer Engineering				
		Syllabus of TY B. Tech. (Honou	urs* in Data science) Semester-VI	
Course Code: ECE972		972	Credits: 0-0-1	
Course: Laborat	ory	Machine Learning	Term Work: 25 Marks	
Teaching Schem	ne:		Practical: Nil	
Practical: 2 Hrs/week		eek		
Prerequisite		Basic knowledge of mathematic	s, statistics and python programming.	
Objectives		• To introduce students to the basic concepts and techniques of Machine		
U	:	Learning.		
		1. Design of experiments in	n Machine Learning.	
		2. Introduction to popular I	Machine Learning Datasets and Toolkits.	
		3. Face Recognition using PCA.		
		4. Practical applications of clustering.		
		5. Experiments on supervis	5. Experiments on supervised classification using MLP, RBF ANN, SVM and	
Laboratory	:	Decision Trees.	Decision Trees.	
Experiments		6. Application of Classifier	6. Application of Classifiers Ensembles.	
		7. Sequence classification using HMM.		
		8. Applications of CNN an	8. Applications of CNN and RNN.	
		9. Path planning with Rein	forcement Learning.	
		10. Introduction to advanced	l machine learning tools like, Azure ML studio,	
		Spark.		
		 Kevin P. Murphy, "Mach Pres, 2016. 	ine Learning – A probabilistic Perspective", MIT	
		2. Randal S, "Python Machi	ne Learning, PACKT Publishing, 2016.	
		3. Ethem Alpaydin, "Machi	ne Learning: The New AI", MIT Press, 2016.	
		4. Shai Shalev-Shwartz, Sha	ai Ben-David, "Understanding Machine Learning:	
		From Theory to Algorithm	ns", Cambridge University Press, 2014.	
		5. Sebastian Raschka, "Pyth	on Machine Learning", Packt Publishing Ltd, 2015	
		 E. Alpaydin, Introduction (India) 2015. 	to Machine Learning, 3rd Edition, Prentice Hall	
Reference		7. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, 2nd Edn., Wiley		
books/ Text	:	India, 2007.		
books		8. C Bishop, Pattern Reco and Statistics), Springer,	gnition and Machine Learning (Information Science 2006.	
9. S. O. Haykin, Neural Networks and Learning Machines, 3rd Edition, Pearson				

Education (India), 2016				
10. J. Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis,				
Cambridge University Press, 2004.				
11. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2017				
12. R. Sutton, Reinforcement Learning – An Introduction, MIT Press, 1998				
13. Relevant Research Papers in the area of Machine Learning				

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

		Maharashtra Instit	ute of Technology, Aurangabad		
	(An Autonomous Institute)				
	Department of Electronics and Computer Engineering				
	Syl	labus of Final Year B. Tech	. (Honours* in Data science) Semester-VII		
Course Code:	EC	CE904	Credits: 4-0-0		
Course: Mach	nine	Learning	Mid Semester Examination-I: 15 Marks		
Teaching Sch	eme	2:	Mid Semester Examination-II: 15 Marks		
Theory: 4 Hr	s/w	eek	Continuous Internal Evaluation:10 Marks		
Tutorial: 00 H	Ir/w	veek	Teacher Assessment: 10 Marks		
			End Semester Examination: 50 Marks		
			End Semester Examination (Duration): 2 Hrs		
Prerequisite		Probability and Statistics,	data analytics skills, knowledge of Computer science,		
		programming languages a	nd coding.		
		1. Understanding Human	learning aspects.		
Objectives		2. Understanding primitive	es and methods in learning process by computer.		
Objectives	•	3. To Provide understand	ing of the techniques, mathematical concepts, and		
		algorithm used in machine	es learning.		
		Introduction to Intelligen	nt Systems,		
		History, Foundations and	Mathematical treatments, Problem solving with AI, AI		
		models, Learning aspects	in AI, Intelligent Agents, types of Agents.		
Unit-1	:				
		Intelligent agents: reactiv	e, deliberative, goal-driven, utility-driven, and learning		
		agents			
			(6 Hrs.)		
		Problem-solving through	n Search:		
		forward and backward, sta	te-space, blind, heuristic, problem-reduction, A, A*,		
Unit-II		AO*, minimax, constraint	propagation, neural, stochastic, and evolutionary search		
		algorithms, sample applica	ations.		
			(6 Hrs.)		
		Knowledge Representati	on and Reasoning:		
		ontologies, foundations o	f knowledge representation and reasoning, representing		
		and reasoning about obje	cts, relations, events, actions, time, and space; predicate		
I]nit-III		logic, situation calculus,	description logics, reasoning with defaults, reasoning		
	•	about knowledge, sample	applications.		
		Planning: planning as s	earch, partial order planning, construction and use of		
		planning graphs.			

		(8 Hrs.)
		Representing and Reasoning with Uncertain Knowledge:
T T •4 T T7		probability, connection to logic, independence, Bayes rule, bayesian networks,
Unit-1V	:	probabilistic inference, sample applications.
		(6 Hrs.)
		Decision-Making:
TT *4 37		basics of utility theory, decision theory, sequential decision problems, elementary
Unit-v	:	game theory, sample applications.
		(6 Hrs.)
		Machine Learning and Knowledge Acquisition:
		learning from memorization, examples, explanation, and exploration. learning nearest
	:	neighbor, naive Bayes, and decision tree classifiers, Q-learning for learning action
Unit-VI		policies, applications.
		Sample Applications of AI
		(8 Hrs.)
		Text Books:
Reference		1. Artificial Intelligence and Machine Learning By Vinod Chandra S.S. Anand
books/ Text	•	Hareendran S
books	Ĩ	2. Stuart J. Russell and Peter Norvig, "Artificial Intelligence A Modern Approach-
		Second Edition" Pearson Education
		3. Tom M. Mitchell. "Machine Learning" McGraw-Hill, 1997.
		4. Ethem Alpaydin "Introduction to machine learning" 2nd ed. The MIT Press, 2010

	Maharashtra Institute of Technology, Aurangabad				
	(An Autonomous Institute)				
	Department of Electronics	and Computer Engineering			
Sylla	abus of Final Year B. Tech. (Hon	ours* in Data Science) Semester-VIII			
Course Code: ECE973		Credits: 0-0-2			
Course: Mini Proje	ect	Term Work: 25 Marks			
Teaching Scheme:		Practical: 25 Marks			
Practical: 4 Hrs/we	eek				
PrerequisiteBasic Electronics, Basic Program		nming Languages.			

To carry out a mini project and simple prototype in the area of interest based on the knowledge gained in Data Science from undergraduate and first semester.

Every individual student will be assigned a faculty to guide them. There will be three major reviews which will be carried out as listed below.

D	D	Mark Weightage			
Keview #	Requirement	Internal	External		
0	Area / Title selection	-	-		
1	Literature review / Proposal for the Project	10%	_		
2	Mathematical Modelling/Circuit Design	20%	_		
3	Final simulation / Hardware presentation	20%	-		
End Semester Exam	Final Viva-Voce and project demonstration	_	50%		

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Note:

- 1. No additional fees will be charged for students opting for Honours/ Minor Degree
- 2. All the courses in the Honours/ Minor will be conducted in offline mode.
- 3. Re-examination is not applicable in Honours and Minor Scheme. Student failing in any of the Minor or Honours courses, at any stage will be discontinued from the Scheme.
- 4. Examination Scheme and Passing rules will be as per the academic rules and regulations of B. Tech.

Faculty of Science and Technology Proposed Honours* in Internet of Things Major disciplines in Bachelor in Electronics and Computer Engineering Electrical Engineering Agricultural Engineering

		ł	lon	ours	s* in	Inte	erne	t of	Thi	ngs						
	Course	Course		Teachi	ng	I	Examir	nation	Schem	e and M	arks			Cred	lit Scl	neme
	Code			Schem	ie											
			Н	ours / V	Veek											
Year & Semester			Theory	Tutorial	Practical	Mid-Sem Exam-1	Continuous Internal Evaluation	Teachers Assessment	End-Semester Exam	Mid-Sem Exam-1	Term work	Practical	Total Marks	Theory / Tutorial	Practical	Total Credit
SY IV	ECED901	Embedded Internet	04			15	15	10	10	50			100	04		04
		of Things			02						25		25		01	01
	ECED9/1	Embedded Internet			02						25		25		01	01
		Laboratory														
		Total	04	-	02			100			25		125	04	01	05
	Total Credits =05									ts =05						
TY V	ECED902	Communication	04			15	15	10	10	50			100	04		04
		Protocols for IoT														
		Total	04	-	-			100		1			100	04		04
		I	1								1			Total	Credi	ts =04
TY VI	ECED903	Sensors Network & Internet of Things	04			15	15	10	10	50			100	04		04
	ECED972	Sensors Network & Internet of Things Laboratory			02						25		25		01	01
		Total	04		02			100	•		25		125	04	01	05
		·	•			·					•			Total	Credit	ts = 05
Final	ECED904	Privacy and	04			15	15	10	10	50			100	04		04
B. Tech		Security in IoT														
VII		Total	04					100	•				100	04		04
	•	·			•								•	Total	Credit	s = 04
Final B. Tech	ECED973	Mini Project			04						25	25	50		02	02
VIII		Total			04						25	25	50		02	02
	1	1	1		1	1	L	1	1	1	1	I	ſ	fotal C	redit	s = 02
							То	tal Cr	edit f	or Sen	neste	r IV-	+V+\	/I+VII	+VII	= 20

		Maharashtra Inst	titute of Technology, Aurangabad				
	(An Autonomous Institute)						
		Department of Ele	ctronics and Computer Engineering				
	S	yllabus of SY B. Tech. (H	Honours* in Internet of Things) Semester-IV				
Course Code	e: E(CED901	Credits: 4-0-0				
Course: Emb	oedd	ed Internet of Things	Mid Semester Examination-I: 15 Marks				
Teaching Sc	hem	e:	Mid Semester Examination-II: 15 Marks				
Theory: 4 H	[rs/w	veek	Continuous Internal Evaluation:10 Marks				
Tutorial: 00	Hr/	week	Teacher Assessment: 10 Marks				
			End Semester Examination: 50 Marks				
			End Semester Examination (Duration): 2 Hrs				
Prerequisite		Basic Electronics, Basic	Programming Language				
		This course introduces Co	oncepts for internet of things and how we can embed it into our				
Objectives	:	daily lives for the develop	pment of life style. It will also help students to build applications				
		according to their problem	m statements.				
		Fundamentals and Ap	plications of IoT				
		Introduction to Internet	of Things (IoT)– Functional Characteristics – Recent Trends				
Unit-I	-I : in the Adoption of IoT – Societal Benefits of IoT, Health Care — Machine						
	Machine (M2M) - Smart Transportation – Smart Living – Smart Cities- Smart Grid,						
		Industry 4.0	Industry 4.0 (8 Hrs)				
		Communication Prince	iples				
Unit-II		RFID – ZigBEE – Blueto	oth – Internet Communication- IP Addresses - MAC Addresses				
		- TCP and UDP – IEEE 8	802 Family of Protocols – Cellular-Introduction to EtherCAT.				
		6	(6 Hrs)				
		IoT Architecture					
Unit-III	:	Functional Requirement	ts - Components of IoT: Sensors – Actuators – Embedded				
		Computation Units – Co	ommunication Interfaces – Software Development (6 Hrs)				
		Microcontrollers for Io	T				
		Features of ESP8266,	Specification of ESP8266, Block diagram of ESP8266,				
Unit-IV	:	Applications of ESP82	.66 , Features of ESP32, Specification of ESP32, Block				
		diagram of ESP32, App	blications of ESP32, Access point and station point mode				
		(8 Hrs)					
		Communication Interf	face in IoT				
Unit-V	:	IEEE 802.11 Wireless N	Jetworks Attacks: Basic Types, WEP Key Recovery Attacks,				
		Keystream Recovery A	ttacks against WEP - RFID Security - Security Issues in				
		ZigBEE: Eavesdropping	Attacks, Encryption Attacks – Bluetooth Security: Threats to				
		Bluetooth Devices and N	etworks. (6 Hrs)				

		Cloud computation and Big data analytics
IIn:4 VI		Evolution of Cloud Computation, Commercial clouds and their features, open source IoT
Unit-VI	•	platforms, cloud dashboards, Big data analytics and Hadoop.
		Interfacing and data logging with cloud: Thing speak, Blync platform. (6 Hrs)
		1. Alessandro Bassi, Martin Bauer, Martin Fiedler, Thorsten Kramp, Rob van
		Kranenburg, Sebastian Lange, Stefan Meissner, "Enabling things to talk –
		Designing IoT solutions with the IoT Architecture Reference Model", Springer
		Open, 2016
		2. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis Karnouskos, Stefan
		Avesand, David Boyle, "From Machine to Machine to Internet of Things",
		Elsevier Publications, 2014.
Reference		3. LuYan, Yan Zhang, Laurence T. Yang, Huansheng Ning, The Internet of Things:
hooks/Toxt		From RFID to the Next-Generation Pervasive Network, Aurbach publications,
DUUKS/ TEXL	:	March, 2008.
DOOKS		4. Vijay Madisetti, Arshdeep Bahga, Adrian McEwen (Author), Hakim Cassimally
		5. "Internet of Things A Hands-on-Approach" Arshdeep Bahga & Vijay Madisetti,
		2014.
		6. Asoke K Talukder and Roopa R Yavagal, "Mobile Computing," Tata McGraw
		Hill, 2010.
		7. Barrie Sosinsky, "Cloud Computing Bible", Wiley-India, 2010
		8. RonaldL. Krutz, Russell Dean Vines, Cloud Security: A Comprehensive Guide
		to Secure Cloud Computing, Wiley-India, 2010
		9. Fadi Al-Turjman, Intelligence in IoT- enabled Smart Cities, 2019, 1st edition,
		CRC Press, ISBN-10: 1138316849
		10. Giacomo Veneri, and Antonio Capasso, Hands-on Industrial Internet of Things:
		Create a powerful industrial IoT infrastructure using Industry 4.0, 2018, Packt
		Publishing.
		11. Subhas Chandra Mukhopadhyay, Smart Sensing Technology for Agriculture and
		Environmental Monitoring, 2012, Springer, ISBN-10: 3642276377.
		12. Adrian McEwen and Hakim Cassimally, —Designing the Internet of Things,
		John Wiley and Sons Ltd, UK, 2014.
		13. Olivier Hersent, David Boswarthick and Omar Elloumi, —The Internet of
		Things: Key Applications and Protocols, John Wiley and Sons Ltd., UK 2012.
		14. Dieter Uckelmann, Mark Harrison, Florian Michahelles, —Architecting the
		Internet of Things, Springer, New York, 2011.
		15. Johnny Cache, Joshua Wright and Vincent Liu, —Hacking Exposed Wireless:
		Wireless Security Secrets and Solutions, Tata McGraw Hill, New Delhi, 2010
		16. Himanshu Dwivedi, Chris Clark and David Thiel, —Mobile Application
		Security, Tata McGraw Hill, Nw Delhi, 2010.
		17. Vijay Madisetti, Arshdeep Bahga, —Internet of Things (A Hands-on Approach),
		Universities Press, 2015.

	18. Tim Mather, Subra Kumaraswamy, ShahedLatif, "Cloud Security and Privacy:
	An Enterprise Perspective on Risks and Compliance" O'Reilly Media; 1 edition
	19. [ISBN: 0596802765], 2009

	Maharashtra Institute of	f Technology, Aurangabad					
	(An Autonomous Institute)						
	Department of Electronics	and Computer Engineering					
	Syllabus of SY B. Tech. (Honours	* in Internet of Things) Semester-IV					
Course Code:	ECED971	Credits: 0-0-1					
Course: Labor	atory Embedded Internet of Things	Term Work: 25 Marks					
Teaching Sche	me:	Practical: Nil					
Practical: 2 Hr	s/week						
Prerequisite	Basic Electronics, Basic Progra	mming Language					
	This course introduces Concept	s for internet of things and how we can embed it into					
	our daily lives for the develop	ment of lifestyle. It will also help students to build					
Objectives	applications according to their p	problem statements.					
Objectives							
	1. Basics of Internet of Things:	Sensors, Actuators, IoT architecture and Gateway.					
	2. IoT Networking: Connectivit	y technologies, Protocols and Interoperability in IoT.					
	3. Blinking LED through Raspt	perry pi or Arduino OR nodeMCU.					
	4. IoT sensors interface with	Raspberry pi or Arduino OR nodeMCU					
	(Temperature/Light sensors).						
	5. Integration of Actuators with	Raspberry pi or Arduino OR nodeMCU (Servo					
	motor/Relay).						
Laboratory	6. Capture Image with Raspber	ry pi or Arduino OR nodeMCU .					
Experiments	7. Design Traffic control system	u: using Raspberry pi or Arduino OR nodeMCU.					
	8. Design Temperature depende	ent auto cooling system: Using Raspberry pi or					
	Arduino OR nodeMCU.						
	9. IoT applications in home aut	omation: Implementing IoT home application using					
	Raspberry pi or Arduino OR	nodeMCU.					
	10. Case study: Emergence of Io	T Healthcare.					
	1. Arshdeep Bahga, Vijay Madis	etti, "Internet of Things – A hands-on approach",					
	Universities						
Reference	2. Honbo Zhou, "The Internet of	Things in the Cloud: A Middleware Perspective" CRC					
books/ Text	Press 2012.						
books	3. Manoel Carlos Ramon, "Intel	® Galileo and Intel® Galileo Gen 2: API Features and					
	Arduino						
	1. http://file.allitebooks.com	/20170102/Building%20Arduino%20Projects%20					
E-books	for%20the%20Inter net	%20of%20Things%202016.pdf					
MOOC	1. http://learn.sparkfun.com	n/tutorials/internet-of-things-experiment-guide					

	Maharashtra Institute of Technology, Aurangabad					
	(An Autonomous Institute)					
	Department of Electronics and Computer Engineering					
	S	yllabus of TY B. Tech. (Hor	nours* in Internet of Things) Semester-V			
Course Code	EC	CED902	Credits: 4-0-0			
Course: Com	mur	ication Protocols for IoT	Mid Semester Examination-I: 15 Marks			
Teaching Sch	eme	2:	Mid Semester Examination-II: 15 Marks			
Theory: 4 H	s/w	eek	Continuous Internal Evaluation:10 Marks			
Tutorial: 00	Hr/v	veek	Teacher Assessment: 10 Marks			
			End Semester Examination: 50 Marks			
			End Semester Examination (Duration): 2 Hr	S		
Prerequisite		None				
		The purpose of this course i	s to impart knowledge on IoT and various prot	tocols study		
Objectives	:	their implementations.				
		Introduction				
TT:4 T		IoT architecture outline, s	tandards - IoT Technology Fundamentals- I	Devices and		
Unit-1	:	gateways, Local and wide	area networking, Data management, Busines	s processes		
		in IoT, Everything as a Service (XaaS), M2M and IoT Analytics (8 Hrs)				
		IoT Reference Architecture				
∐nit-II		Introduction, Functional V	View, Information View, Deployment and	Operational		
0111-11		View, Other Relevant a	architectural views. Real-World Design (Constraints-		
		Introduction, Technical Design constraints (6 Hrs)				
		IoT Data Link Layer & Network Layer Protocols				
Unit-III		PHY/MAC Layer (3GPP N	ATC, IEEE 802.11, IEEE 802.15), Wireless H	ART, Z		
	•	Wave, Bluetooth Low Ener	rgy, Zigbee Smart Energy, DASH7 - Network	Layer-		
		IPv4,IPv6, 6LoWPAN, DH	ICP, ICMP, RPL, CORPL, CARP	(8 Hrs)		
		IoT Transport Layer	Protocols			
Unit-IV	:	Transport Layer -TCP, MP	TCP, UDP, DCCP, SCTP, TLS, DTLS	(6 Hrs)		
		IoT Session Layer Pro	otocols			
Unit-V	:	Session Layer-HTTP, CoA	P, XMPP, AMQP, MQTT	(6 Hrs)		
		IoT Service Layer Pro	otocols & Security Protocols			
Unit-VI	:	Service Layer -oneM2M, E	ETSI M2M, OMA, BBF – Security in IoT Pro	tocols –		
		MAC802.15.4, 6LoWPAN	I, RPL, Application Layer	(6 Hrs)		
		1. Daniel Minoli, "Bu	ilding the Internet of Things with IPv6 and I	MIPv6: The		
		Evolving World of	M2M Communications", ISBN: 978-1-118-473	347-4, Willy		
		Publications ,2016				
Reference		2. Jan Holler, Vlasios	Tsiatsis, Catherine Mulligan, Stefan Avesar	nd, Stamatis		
Neierence		Karnouskos, David I	Boyle, "From Machine-to-Machine to the Internet	et of Things:		

books/ Text	:	Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2015
books		3. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things",
		ISBN 978-3-64219156-5 e-ISBN 978-3-642-19157-2, Springer, 2016
		4. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.

	Maharashtra Institute of Technology, Aurangabad					
	(An Autonomous Institute)					
		Department of E	lectronics and Computer Engineering			
	S	yllabus of TY B. Tech. (Honours* in Internet of Things) Semester-VI			
Course Code:	Course Code: ECED903 Credits: 4-0-0					
Course: Sense	or n	etworks & IoT	Mid Semester Examination-I: 15 Marks			
Teaching Sch	eme	:	Mid Semester Examination-II: 15 Marks			
Theory: 4 H	s/w	eek	Continuous Internal Evaluation:10 Marks			
Tutorial: 00	Hr/v	veek	Teacher Assessment: 10 Marks			
			End Semester Examination: 50 Marks			
			End Semester Examination (Duration): 2 Hrs			
Prerequisite		None				
		To impart the knowled	lge and technical skills in designing s Sensor networks & IoT			
Objectives	:					
		Introduction	Introduction			
Unit-I	:	Introduction to Sensor no	etworks in smart transportation, smart cities, smart living, smart			
		energy, smart health, and smart learning. (6 Hrs)				
		Sensor Network Syste	ems			
	Cyber Physical Systems, Systems of Systems, Software Architectures and Com					
Unit-II		Software Interoperabilit	y, Big Data and Big Data Mining, Privacy and Security IoT			
		Reference Architecture I	Introduction, Functional View, Information View, Deployment and			
		Operational View, Othe	er Relevant architectural views. Real-World Design Constraints-			
		Introduction, Technical I	Design constraints, nardware, Data representation and visualization,			
		Interaction and Ternote Co	& Endneinte			
		Linux on Raspherry Int	erface and Programming & IOT Device, Hardware Platforms and			
Unit-III	:	Energy Consumption	Operating Systems Time Synchronization Positioning and			
		Localization, Medium A	ccess Control, Topology and Coverage Control, Routing: Transport			
		Protocols, Network Secu	rrity, Middleware, Databases (6 Hrs)			
		Industrial Automatio	n& IoT			
TT 1 / TT		Industrial Automation-Se	ervice-oriented architecture-based device integration, SOCRADES:			
Unit-IV : realizing the enterprise integrated Web of Things, IMC-AESOP: from the Web o			ntegrated Web of Things, IMC-AESOP: from the Web of Things to			
		the Cloud of Things, Con	mmercial Building Automation (6 Hrs)			
		Case Study – IoT Im	plementations			
Unit-V	:	Case study: Smart Grid a	&IoT, Commercial building automation using IoT, Recent trends in			
		sensor network and IOT	architecture, Automation in Industrial aspect of IOT. (6 Hrs)			

		IoT Projects					
		Creating the sensor project - Preparing Raspberry Pi/ ARM Cortex - Clayster libraries -					
		Hardware-Interacting with the hardware - Interfacing the hardware- Internal representation					
		of sensor values - Persisting data - External representation of sensor values - Exporting					
Unit VI		sensor data - Creating the actuator project- Hardware - Interfacing the hardware -Creating a					
Unit-VI	·	controller - Representing sensor values - Parsing sensor data - Calculating control states -					
		Creating a camera - Hardware -Accessing the serial port on RaspberryPi / ARM Cortex -					
		Interfacing the hardware - Creating persistent default settings - Adding configurable					
		properties - Persisting the settings - Working with the current settings - Initializing the camera					
		(8 Hrs)					
		1. Mandler, B., Barja, J., MitreCampista, M.E., Cagáová, D., Chaouchi, H., Zeadally,					
		S., Badra, M., Giordano, S., Fazio, M., Somov, A., Vieriu, RL., Internet of Things.					
		IoT Infrastructures, Springer International Publication					
D.C		2. Internet of Things: A Hands-On Approach Paperback – 2015, by ArsheepBahga					
Reference		(Author), Vijay Madisetti (Author)					
books/ Text	:	3. Dr. Guillaume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies					
books		Sensors for the Internet of Things Businesses & Market Trends 2014 -2024', Yole					
		Development Copyrights, 2014					
		4. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015					
		5. Editors Ovidiu Vermesan Peter Friess,'Internet of Things - From Research and					
		Innovation to Market					
		6. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.					
		7. IoT Fundamentals: Networking Technologies, Protocols and Use Cases for the					
		Internet of Things by Pearson Paperback – 16 Aug 2017, by Hanes David (Author),					
		Salgueiro Gonzalo (Author), Grossetete Patrick (Author), Barton Rob (Author)					

		Μ	aharashtra Institute of T	Fechnology, Aurangabad			
	(An Autonomous Institute)						
	Department of Electronics and Computer Engineering						
Syllabus of TY B. Tech. (Honours* in Internet of Things) Semester-VI							
Course Code: ECED972 Credits: 0-0-1							
Course: Labor	ato	ry Senso	r networks & IoT	Term Work: 25 Marks			
Teaching Sche	me	e:		Practical: 25 Marks			
Practical: 2 Hr	s/v	veek					
Prerequisite		Basic E	lectronics, Basic Program	ming Language			
Objectives	:	To impart the knowledge and technical skills in designing s Sensor networks & IoT					
Laboratory Experiments	•		 Node MCU/ESP 32 - Temperature Sensor Interfacing (LM35) - Bluetooth Interfacing (HC05)- Motor driver Interfacing (L298) -LCD Interfacing (HD44780) IMPLEMENTATION OF IoT using BLYNK/CAYENNE - –Installation and Activation - Blinking an LED -Reading Analog Voltage - LCD Interfacing (HD44780) -Project IMPLEMENTATION OF IoT using Google Assistant – Arest server - Creating own server – Project IMPLEMENTATION OF IoT using Raspberry Pi & Python Programming: - LCD Interfacing (HD44780) - Motor driver Interfacing (L298) – Camera interface 				
Reference books/ Text books	:		 Mandler, B., Barja, J., MitreCampista, M.E., Cagáová, D., Chaouchi, H., Zeadally, S., Badra, M., Giordano, S., Fazio, M., Somov, A., Vieriu, RL., Internet of Things. IoT Infrastructures, Springer International Publication Internet of Things: A Hands-On Approach Paperback – 2015, by ArsheepBahga (Author), Vijay Madisetti (Author) IoT Fundamentals: Networking Technologies, Protocols and Use Cases for the Internet of Things by Pearson Paperback – 16 Aug 2017, by Hanes David (Author), Salgueiro Gonzalo (Author), Grossetete Patrick (Author), Barton Rob (Author) 				

	Maharashtra Institute of Technology, Aurangabad					
	(An Autonomous Institute)					
	Department of Electronics and Computer Engineering					
S	Syllabus of Final Year B. Tech. (Honours* in Internet of Things) Semester-VII					
Course Code: ECED904 Credits: 4-0-0						
Course: Priva	acy a	and Security in IoT	Mid Semester Examination-I: 15 Marks			
Teaching Scheme:Mid Semester Examination-II: 15 Marks						
Theory: 4 H	rs/w	eek	Teacher Assessment: 10 Marks			
Tutorial: 00	Hr/v	week	Continuous Internal Evaluation:10 Marks			
			End Semester Examination: 50 Marks			
			End Semester Examination (Duration): 2 Hrs			
Prerequisite		None				
		Ability to understa	and the Security requirements in IoT.			
		• Understand the cryptographic fundamentals for IoT				
Objectives	:	Ability to understand the authentication credentials and access				
		control				
• Understand the various types Trust models and Cloud Security.						
		Introduction				
Unit-I	:	Security Requirements in IoT Architecture - Security in Enabling Technologies -				
		Security Concerns in IoT Applications. Security Architecture in the Internet of				
		Things		(6 Hrs)		
		Securing the Interne	t of Things			
		Security Requirements in	IoT - Insufficient Authentication/Authorization	- Insecure		
Unit-II		Access Control - Threats to Access Control, Privacy, and Availability - Attac				
		Specific to IoT. Vulnerab	ilities – Secrecy and Secret-Key Capacity -			
		Authentication/Authoriza	tion for Smart Devices - Transport Encryption –	Attack &		
		Fault Trees		(8 Hrs)		
		Cryptographic funda	amentals for IoT			
		Cryptographic primitives	and its role in IoT – Encryption and Decryption	n – Hashes		
Unit-III	:	Digital Signatures – Rand	lom number generation – Cipher suites – key ma	anagement		
		fundamentals – cryptogra	phic controls built into IoT messaging and comr	nunication		
		protocols – IoT Node Aut	hentication	(8 Hrs)		
		Identity & Access M	anagement Solutions for IoT			
Unit-IV	:	Identity lifecycle – auther	ntication credentials – IoT IAM infrastructure –			
		Authorization with Publis	h / Subscribe schemes – access control	(6 Hrs)		

		Privacy Preservation And Trust Models for IoT						
Unit V	•	Concerns in data dissemination – Lightweight and robust schemes for Privacy						
Cint-V	•	protection – Trust and Trust models for IoT – self-organizing						
		Things - Preventing unauthorized access.(6 Hrs)						
		Cloud Security for IoT						
Unit-VI		Cloud services and IoT – offerings related to IoT from cloud service providers –						
	•	Cloud IoT security controls – An enterprise IoT cloud security architecture – New						
		directions in cloud enabled IoT computing						
		1. Practical Internet of Things Security (Kindle Edition) by Brian Russell, Drew						
Reference	:	Van Duren						
books/ Text		2. Securing the Internet of Things Elsevier						
books		3. Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and						
		Implementations						

Maharashtra Institute of Technology, Aurangabad

(An Autonomous Institute)

Department of Electronics and Computer Engineering

Syllabus of Final Year B. Tech. (Honours* in Internet of Things) Semester-VIII

Prerequisite	Basic Electronics, Basic Programming Language		
Practical: 4 Hrs/v	veek		
Teaching Scheme	2:	Practical: 25 Marks	
Course: Mini Pro	vject	Term Work: 25 Marks	
Course Code: EC	CED973	Credits: 0-0-2	

To carry out a mini project and simple prototype in the area of interest based on the knowledge gained in Internet of Things from undergraduate and first semester

Every individual student will be assigned a faculty to guide them. There will be three major reviews which will be carried out as listed below.

Deview #	Paguinomont	Mark Weightage			
Keview #	Kequirement	Internal	External		
0	Area / Title selection	-	-		
1	Literature review / Proposal for the Project	10%	-		
2	Mathematical modelling/Circuit Design	20%	-		
3	Final simulation / Hardware presentation	20%	-		
End Semester Exam	Final Viva-Voce and project demonstration	-	50%		

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Note:

- 1. No additional fees will be charged for students opting for Honours/ Minor Degree
- 2. All the courses in the Honours/ Minor will be conducted in offline mode.
- 3. Re-examination is not applicable in Honours and Minor Scheme. Student failing in any of the Minor or Honours courses, at any stage will be discontinued from the Scheme.
- 4. Examination Scheme and Passing rules will be as per the academic rules and regulations of B. Tech.

Maharashtra Institute of Technology (An Autonomous Institute)

Proposed Honors* in Robotics and Automation Major Disciplines Bachelor of Mechanical Engineering Agricultural Engineering Plastic and Polymer Engineering (With effect from A.Y. 2022-23)

	Honors* in Robotics and Automation															
ler	Course Code	Course Code		Teaching Scheme Hours / Week			Examination Scheme and Marks						Cred	Credit Scheme		
Year & Semes		Course	Theory	Tutorial	Practical	Mid-Sem Exam-1	Mid-Sem Exam-1	Continuous Internal Evaluation	Teachers Assessment	End-Semester Exam	Term work	Practical	Total Marks	Theory / Tutorial	Practical	Total Credit
	MED- 901	Fundamentals of Automation	04			15	15	10	10	50			100	04		04
SY IV	MED- 971	Laboratory			02						25		25		01	01
		Total	04	-	02			100)		25		125	04	01	05
			T				T					1		Total	Credi	ts=05
TY V	MED- 902	Fundamentals of Robotics	04			15	15	10	10	50			100	04		04
'		Total	04	-	-			100)				100	04		04
			T		1		T				•	•		Tota	l Credi	ts=04
ТҮ	MED- 903	Automation System Design	04			15	15	10	10	50			100	04		04
VI	MED- 972	Laboratory			02						25		25		01	01
		Total	04		02			100)		25		125	04	01	05
														Tota	lCredi	ts=05
Final B. Tech.	MED-904	Robotics & Automation	04			15	15	10	10	50			100	04		04
VII		Total	04					100					100	04		04
														Total	Credi	ts=04
Final B.		Mini Project			04						25	25	50		02	02
Tech. VIII		Total			04						25	25	200		02	02
														Tota	l Credi	ts=02
	Total Credit for Semester IV+V+VI+VII +VIII= 20															

	Maharashtra Institute of Technology, Aurangabad						
	(An Autono	omous Institute)					
	Department of Mechanical Engineering						
Syllabus	Syllabus of SY B. Tech. (Honours* in Robotics and Automation) Semester-IV						
Course Code: M	ED901	Credits: 4-0-0					
Course: Fundan	nentals of Automation	Mid Semester Examination-I: 15 Marks					
Teaching Schem	e:	Mid Semester Examination-II: 15 Marks					
Theory: 4 Hrs/w	veek	Continuous Internal Evaluation:10 Marks					
Tutorial: 00 Hr/	week	Teacher Assessment: 10 Marks					
		End Semester Examination: 50 Marks					
		End Semester Examination (Duration): 2 Hrs					
	Introduction Automation in	n Production System, Principles and Strategies of					
Unit 1	Automation, Basic Elements of an Automated System, Advanced Automation						
	Functions, Levels of Autom	ations. (6hrs)					
	Type of Automation, Auto	mated Flow lines, Methods of Work-part Transport,					
	Transfer Mechanism, Buffer Storage, Control Functions, and Automation for						
Unit 2	Machining Operations, Design and Fabrication Considerations. Automated						
	Flow Lines: General Terminology, Partial Automation, Automated Flow.						
	(6hrs)						
	Material handling and its	function, Types of Material Handling Equipment,					
Unit 3	Analysis for Material Handling Systems, Design of the System, Conveyor						
	Systems, Automated Guided Vehicle Systems. Automated Storage/Retrieval						
	Systems. Automated Assembly Systems: Design for Automated Assembly,						
	Types of Automated Assembly Systems, Part Feeding Devices. (6hrs)						
Unit 4	Introduction to flexible man	nufacturing systems, Types of FMS, Components of					
	FMS, Group Technology	(6hrs)					
	Automated Inspection and	Testing Inspection and testing, Statistical Quality					
Unit 5	Control, Automated Inspec	tion Principles and Methods, Sensor Technologies					
	for Automated Inspection,	Coordinate Measuring Machines, Machine Vision,					
	Other optical Inspection Me	ethods. (6hrs)					
	Programmable Logic Co	ontrollers (PLCs)- Introduction to PLC, Logic					
Unit 6	Functions, Input & Outp	out Modules, PLC Processors, PLC Instructions,					
	Introduction to Programming a PLC. (6hrs)						

	1. Programmable Logic Controller, W. Bolton, Newnes.
Reference / Text	2. Mechatronics, Robert H. Bishop, Tailor and Francis.
Books	3. Computer Based Industrial Control, Krishna kant, TMH.
	4. Automatic Control system, Hasan Sayeed, New India publications.

	Maharashtra Institute of Technology, Aurangabad					
	(An Autonomous Institute)					
	Department of Me	echanical Engineering				
Syl	Syllabus of SY B. Tech. (Honours* in Robotics and Automation) Semester-IV					
Course Co	ourse Code: MED971 Credits: 0-0-1					
Course: La	aboratory Fundamentals of	Term Work: 25 Marks				
Automatic	omation Practical: Nil					
Teaching	Teaching Scheme:					
Practical:	Practical: 2 Hrs/week					
	1. Study of automation system co	omponents.				
	2. Study and demonstration of Cl	NC machines.				
	3. Study of various material hand	lling systems.				
	4. Study and demonstration of ro	bot system.				
List of	5. Study of FMS systems and its	components.				
practical	6. Study and demonstration of A	SRS.				
	7. Study of automated flow lines					
	8. Demonstration and study of Pl	LC and its components.				
	9. PLC programing for ON/OFF	of a motor				
	10. Case study of a typical autom	nation system.				

Maharashtra Institute of Technology, Aurangabad						
	(An Autonomous Institute)					
	Department of Me	echanical Engineering				
Sy	Syllabus of TY B. Tech. (Honours* in Robotics and Automation) Semester-V					
Course Co	ode: MED902	Credits: 4-0-0				
Course: F	fundamentals of Robotics	Mid Semester Examination-I: 15 Marks				
Teaching	Scheme:	Mid Semester Examination-II: 15 Marks				
Theory: 4	Hrs/week	Continuous Internal Evaluation:10 Marks				
Tutorial:	00 Hr/week	Teacher Assessment: 10 Marks				
		End Semester Examination: 50 Marks				
		End Semester Examination (Duration): 2 Hrs				
Unit 1	Introduction Robot configurations, Robot Anatomy Basic Components of Robot Systems: Manipulators, end effectors, sensors, controllers etc. Mechanical System in Robotics: Robot motion analysis and control, Robot kinematic, position analysis. (6hrs)					
Unit 2	Electrical Drives for Robot Stepper motor, DC motors, AC motors, hydraulic and pneumatic systems, drive selection for robotics joints. (6hrs)					
Unit 3	Robotic grippers and Sensors Linkage activated mechanical grippers, adhesive grippers, magnetic grippers, collets, scoops, expansion bladders, etc. (6hrs)					
Unit 4	Sensors in Robotics: Position sensor, velocity sensor, proximity sensors, touch sensors, force sensors. Vision Sensor. (6hrs)					
Unit 5	Robot Programming methods – Teach Pendant, Joint Co-ordinates, Global co- ordinates, Tool co-ordinates, Workpiece co-ordinates, Lead through, Off-line programing, Applications of Robots Application of robots in Material Handling, process operations and Assembly and inspection. (6hrs)					
Unit 6	Collaborative Robots, Types of Cobots. Robot Implementation Issues Approach for implementing Robotics, Safety, Training and Maintenance Social Aspects of Robotics. (6hrs)					

	1. Fu.K.S. Gonzalz.R.C., and Lee C.S.G., "Robotics Control, Sensing, Vision and
Reference	Intelligence", McGrawHill Book Co., 1987.
/ Text	2. Yoram Koren, "Robotics for Engineers", McGrawHill Book Co., 1992.
Books	3. Janakiraman.P.A., "Robotics and Image Processing", Tata McGrawHill, 1995.
	4. Ronald Siegwart, Illah R. Nourbakhsh, "Autonomus Mobile Robot", MIT.

(An Autonomous Institute) Department of Mechanical Engineering Syllabus of TY B. Tech. (Honours* in Robotics and Automation) Semester-VI Course Code: MED903 Credits: 4-0-0 Mid Semester Examination-I: 15 Marks Design Mid Semester Examination-II: 15 Marks Teaching Scheme: Continuous Internal Evaluation: 10 Marks Theory: 4 Hrs/week Teacher Assessment: 10 Marks Tutorial: 00 Hr/week End Semester Examination: 50 Marks End Semester Examination (Duration): 2 Hrs Sensors and Transducers, Classification and types of sensors, Digital sensors – Unit 1 Sensors and Transducers, Classification and types of sensors, Digital sensors – Unit 2 Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs) Unit 3 Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs) Unit 5 Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs) Unit 6 Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs) <t< th=""><th colspan="7">Maharashtra Institute of Technology, Aurangabad</th></t<>	Maharashtra Institute of Technology, Aurangabad								
Department of Mechanical Engineering Syllabus of TY B. Tech. (Honours* in Robotics and Automation) Semester-VI Course Code: MED903 Course: Automation System Design Teaching Scheme: Theory: 4 Hrs/week Credits: 4-0-0 Mid Semester Examination-I: 15 Marks Mid Semester Examination-II: 15 Marks Continuous Internal Evaluation: 10 Marks Teacher Assessment: 10 Marks End Semester Examination. 50 Marks End Semester Examination. 50 Marks End Semester Examination (Duration): 2 Hrs Unit 1 Sensors and Transducers, Classification and types of sensors, Digital sensors – Proximity Sensors, Reed sensors, temperature switch, pressure switch, Selection of sensors and transducers, Analog sensors and ADC. (6hrs) Unit 2 Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs) Unit 3 Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs) Unit 4 Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs) Unit 6 Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs) Lowid 6 1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI.	(An Autonomous Institute)								
Syllabus of TY B. Tech. (Honours* in Robotics and Automation) Semester-VI Course Code: MED903 Credits: 4-0-0 Mid Semester Examination-I: 15 Marks Mid Semester Examination-I: 15 Marks Design Mid Semester Examination-II: 15 Marks Teaching Scheme: Continuous Internal Evaluation: 10 Marks Theory: 4 Hrs/week Teacher Assessment: 10 Marks Tutorial: 00 Hr/week End Semester Examination: 50 Marks End Semester Examination: 0 Duration): 2 Hrs Sensors and Transducers, Classification and types of sensors, Digital sensors – Unit 1 Proximity Sensors, Reed sensors, temperature switch, pressure switch, Selection of sensors and transducers, Analog sensors and ADC. (6hrs) Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs) Unit 3 Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs) Unit 5 Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs) Unit 6 Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs) Linit 6 . Programmable Logic Controller, W. Bolton, Newnes. . <	Department of Mechanical Engineering								
Course Code: MED903Credits: 4-0-0Course: Automation SystemMid Semester Examination-I: 15 MarksDesignMid Semester Examination-I: 15 MarksTeaching Scheme:Continuous Internal Evaluation: 10 MarksTheory: 4 Hrs/weekTeacher Assessment: 10 MarksTutorial: 00 Hr/weekEnd Semester Examination: 50 MarksEnd Semester Examination: 50 MarksEnd Semester Examination (Duration): 2 HrsUnit 1Sensors and Transducers, Classification and types of sensors, Digital sensors - Proximity Sensors, Reed sensors, temperature switch, pressure switch, Selection of sensors and transducers, Analog sensors and ADC. (6hrs)Unit 2Pneumatic Actuators - linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs)Unit 3Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs)Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Syllabus of TY B. Tech. (Honours* in Robotics and Automation) Semester-VI								
Course: Automation System Mid Semester Examination-I: 15 Marks Design Mid Semester Examination-II: 15 Marks Teaching Scheme: Continuous Internal Evaluation: 10 Marks Theory: 4 Hrs/week Teacher Assessment: 10 Marks Tutorial: 00 Hr/week End Semester Examination: 50 Marks End Semester Examination (Duration): 2 Hrs Sensors and Transducers, Classification and types of sensors, Digital sensors – Vnit 1 Sensors and Transducers, Classification and types of sensors, Digital sensors – Proximity Sensors, Reed sensors, temperature switch, pressure switch, Selection of sensors and transducers, Analog sensors and ADC. (6hrs) Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs) Unit 3 Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs) Unit 4 Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs) Unit 5 Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs) Unit 6 I. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. Process Control Instrumentation Technology, Curtis Johnson,	Course Code: MED903 Credits: 4-0-0								
DesignMid Semester Examination-II: 15 MarksTeaching Scheme:Continuous Internal Evaluation: 10 MarksTheory: 4 Hrs/weekTeacher Assessment: 10 MarksTutorial: 00 Hr/weekEnd Semester Examination (Duration): 2 HrsUnit 1Sensors and Transducers, Classification and types of sensors, Digital sensors – Proximity Sensors, Reed sensors, temperature switch, pressure switch, Selection of sensors and transducers, Analog sensors and ADC. (6hrs)Unit 2Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs)Unit 3Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs)Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6I. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Course: Automation System Mid Semester Examination-I: 15 Marks								
Teaching Scheme: Theory: 4 Hrs/weekContinuous Internal Evaluation: 10 MarksTutorial: 00 Hr/weekTeacher Assessment: 10 MarksTutorial: 00 Hr/weekEnd Semester Examination (Duration): 2 HrsImit 1Sensors and Transducers, Classification and types of sensors, Digital sensors – Proximity Sensors, Reed sensors, temperature switch, pressure switch, Selection of sensors and transducers, Analog sensors and ADC. (6hrs)Imit 2Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs)Imit 3Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs)Imit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Imit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Imit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Design		Mid Semester Examination-II: 15 Marks						
Theory: 4 Hrs/week Teacher Assessment: 10 Marks Tutorial: 00 Hr/week End Semester Examination: 50 Marks End Semester Examination (Duration): 2 Hrs Sensors and Transducers, Classification and types of sensors, Digital sensors – Unit 1 Proximity Sensors, Reed sensors, temperature switch, pressure switch, Selection of sensors and transducers, Analog sensors and ADC. (6hrs) Unit 2 Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs) Unit 3 Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs) Unit 4 Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs) Unit 5 Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs) Unit 6 Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs) Reference 1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Teaching	Scheme:	Continuous Internal Evaluation:10 Marks						
Tutorial: 00 Hr/week End Semester Examination: 50 Marks Image: The semicond series of the semicond semicon	Theory: 4	Hrs/week	Teacher Assessment: 10 Marks						
End Semester Examination (Duration): 2 Hrs International Sensors and Transducers, Classification and types of sensors, Digital sensors – Proximity Sensors, Reed sensors, temperature switch, pressure switch, Selection of sensors and transducers, Analog sensors and ADC. (6hrs) Unit 1 Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs) Unit 3 Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs) Unit 4 Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs) Unit 5 Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs) Unit 6 Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs) Reference / Text 1. Programmable Logic Controller, W. Bolton, Newnes. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Tutorial:	00 Hr/week	End Semester Examination: 50 Marks						
Unit 1Sensors and Transducers, Classification and types of sensors, Digital sensors – Proximity Sensors, Reed sensors, temperature switch, pressure switch, Selection of sensors and transducers, Analog sensors and ADC. (6hrs)Unit 2Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs)Unit 3Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs)Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.			End Semester Examination (Duration): 2 Hrs						
Unit 1Proximity Sensors, Reed sensors, temperature switch, pressure switch, Selection of sensors and transducers, Analog sensors and ADC. (6hrs)Unit 2Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs)Unit 3Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs)Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.		Sensors and Transducers,	Classification and types of sensors, Digital sensors -						
of sensors and transducers, Analog sensors and ADC. (6hrs)Unit 2Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs)Unit 3Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs)Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Unit 1	Proximity Sensors, Reed s	ensors, temperature switch, pressure switch, Selection						
Unit 2Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction control valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs)Unit 3Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs)Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.		of sensors and transducers, Analog sensors and ADC. (6hrs)							
Unit 2valves, Flow Control Valves, Typical pneumatic system working, Comparison between Hydraulic and Pneumatic systems. (6hrs)Unit 3Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs)Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming basics - programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Pneumatic Actuators – linear, rotary, semi-rotary cylinders, Direction								
between Hydraulic and Pneumatic systems. (6hrs)Unit 3Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs)Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming basics - programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Unit 2	valves, Flow Control Valves, Typical pneumatic system working, Comparison							
Unit 3Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors, Variable frequency drives - Introduction. (6hrs)Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming basics - programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.		between Hydraulic and Pneumatic systems. (6hrs)							
Unit 3Variable frequency drives - Introduction. (6hrs)Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes.2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.		Selection of Motors, Basics of - Induction motors, Stepper motors, Servo motors,							
Unit 4Selection of Mechanical components Gears, bearing, chain, sprockets, shafts, belts conveyor and its types. (6hrs)Unit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes.2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Unit 3	Variable frequency drives - Introduction. (6hrs)							
Unit 4Selection of Meenanical components dears, bearing, chain, sprockets, sharts, beasUnit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.		Selection of Mechanical con	pronents Gears bearing chain sprockets shafts belts						
Unit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Unit 4	conveyor and its types (6hr	s)						
Unit 5Selection of PLC and PLC programming basics – programming for typical latching circuit etc., Types of PLC programming methods. (6hrs)Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes.2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.		Selection of DLC and DL	C meansming basiss meansming for tunical						
Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.	Unit 5	latching circuit etc. Tunes	of DLC programming matheds (6hr g)						
Unit 6Automation system design, developing automation system for a typical industrial application. Case study of automation system. (6hrs)Reference / Text Books1. Programmable Logic Controller, W. Bolton, Newnes. 2. Mechatronics, Robert H. Bishop, Tailor and Francis. 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA.		facining circuit etc., Types	of PLC programming methods. (onrs)						
Clift 0application. Case study of automation system. (6hrs)Reference1. Programmable Logic Controller, W. Bolton, Newnes./ Text2. Mechatronics, Robert H. Bishop, Tailor and Francis.Books3. Process Control Instrumentation Technology, Curtis Johnson, PHI.4. SCADA, Stuart A Boyer, ISA.	Unit 6	Automation system design,	, developing automation system for a typical industrial						
Reference1. Programmable Logic Controller, W. Bolton, Newnes./ Text2. Mechatronics, Robert H. Bishop, Tailor and Francis.Books3. Process Control Instrumentation Technology, Curtis Johnson, PHI.4. SCADA, Stuart A Boyer, ISA.	Onit	application. Case study of automation system. (6hrs)							
Reference/ TextBooks4. SCADA, Stuart A Boyer, ISA.		1. Programmable Logic Co	ontroller, W. Bolton, Newnes.						
 / Text Books 3. Process Control Instrumentation Technology, Curtis Johnson, PHI. 4. SCADA, Stuart A Boyer, ISA. 	Reference	2. Mechatronics, Robert H	. Bishop, Tailor and Francis.						
Books 4. SCADA, Stuart A Boyer, ISA.	/ Text	3. Process Control Instrum	nentation Technology, Curtis Johnson, PHI.						
	Books	4. SCADA, Stuart A Boyer, ISA.							

	Maharashtra Institute of Technology, Aurangabad						
	(An Autonomous Institute)						
Department of Mechanical Engineering							
Syllabus of TY B. Tech. (Honours* in Robotics and Automation) Semester-VI							
Course Co	de: MED972	Credits: 0-0-1					
Course: La	aboratory Automation System	Term Work: 25 Marks					
Design		Practical: Nil					
Teaching S	Scheme:						
Practical:	Practical: 2 Hrs/week						
	1. Sensor demonstration and study of sensor applications.						
	2. Actuators demonstration and study of actuator applications.						
	3. Study and demonstration of pneu	umatic systems.					
	4. Study and demonstration of hydr	raulic systems.					
List of	5. Demonstration and study of robo	ot and its components.					
practical	6. Robot programing for given co-ordinates.						
	6. Study and demonstration of PLC	and its components.					
	8. PLC programming – SR and RS	blocks.					
	9. PLC programming – Latching.						
	10. Case study of a mechatronics system.						

	Maharashtra Institute of Technology, Aurangabad						
	(An Autonomous Institute)						
	Department of Mechanical Engineering						
Syllabu	Syllabus of Final Year B. Tech. (Honours* in Robotics and Automation) Semester-VII						
Course Co	de: MED904 Credits: 4-0-0						
Course: A	Course: Automation and Robotics Mid Semester Examination-I: 15 Marks						
Teaching Scheme: Mid Semester Examination-II: 15 M							
Theory: 4	Hrs/week	Continuous Internal Evaluation:10 Marks					
Tutorial:	00 Hr/week	Teacher Assessment: 10 Marks					
		End Semester Examination: 50 Marks					
		End Semester Examination (Duration): 2 Hrs					
Unit 1	CAD/CAM, Product cycle and C.	AD CAM in it, CAD- 3D modeling and its types,					
	CAM, and its technologies. (6hrs	5)					
Unit 2	Finite Element Analysis Types of analysis FEA procedure Computer Integrated						
	Manufacturing FMS and its types FMS Components (6hrs)						
Unit 3	SCADA System, SCADA architecture, DCS, Micro Electrical Mechanical						
	Systems, Applications of MEMS. (6hrs)						
Unit 1	Industry 4.0-History of industrial	revolutions, Components of I4.0, IoT and its					
Unit 4	architecture, applications of IoT - I	Energy sector, smart homes, and smart cities etc.					
	(6hrs)						
Unit 5	Digital Manufacturing Industry, role of digital manufacturing in optimizing						
	production cost and time, difference between digitization and digitalization.						
	(6hrs)						
Ilm:4 6	Cubor physical systems Classic	computing Additive manufacturing Dia 1-4-					
	analytics etc. (6hrs)	computing, Additive manufacturing, Dig data					
Reference	1 CAD/CAM M P Groower a	nd F. W. Zimmer. Prentice hall of India					
/ Tevt	2 CAD/CAM Zeid Ibrahim P. Siyasubramanian Tata MaCrow Uill						
Books							
DOOUS							

	3.	The Internet of Things: Applications and Protocols, Oliver Hersent, David
		Boswarthick, Omar Elloumi, Wiley publications.
	4.	Mechatronics, Robert H. Bishop, Tailor and Francis.

	Maharashtra Institute of Technology, Aurangabad							
(An Autonomous Institute)								
Department of Mechanical Engineering								
Syllabus	labus of Final Year B. Tech. (Honours* in Robotics and Automation) Semester-VIII							
Course Code	: MED973		Credits: 0-0-	dits: 0-0-2				
Course: Mini	Project		Term Work: 25 Marks					
Teaching Sch	neme:		Practical: 25 Marks					
Practical: 4 H	Irs/week							
Prerequisite	Fundament	als of electrical drives	, motors and a	controllers used in el	ectrical drives			
	E		1		. 1 1 .1			
	To carry ou	it a min project and si	mple prototyp	be in the area of inter	est based on the			
	knowledge	gained in Electrical	vehicles from	n undergraduate and	l first semester.			
	Every indiv	vidual student will b	e assigned a	faculty to guide th	em. There will			
	be							
	three major	reviews which will be	e carried out a	s listed below.				
	Review #	Requirement		Mark Weightage				
				Internal	External			
	0	Area/Title		-	-			
		selection						
	1 Literature review/Proposal 10%							
	-	Literature review/Pro	oposal	10%	-			
List of	1	Literature review/Pro for the Project	oposal	10%	-			
List of Practical	2	Literature review/Pro for the Project Mathematical	oposal	20%	-			
List of Practical	2	Literature review/Pro for the Project Mathematical	oposal	10%	-			
List of Practical	2	Literature review/Pro for the Project Mathematical modelling /CircuitDe	oposal	10%	-			
List of Practical	2	Literature review/Pro for the Project Mathematical modelling /CircuitDe Final	oposal	10% 20% 20%	-			
List of Practical	2	Literature review/Pro for the Project Mathematical modelling /CircuitDe Final simulation/Hardware	oposal esign	10% 20% 20%	-			
List of Practical	2	Literature review/Pro for the Project Mathematical modelling /CircuitDe Final simulation/Hardware presentation	oposal esign	10% 20% 20%	-			
List of Practical	2 3 End	Literature review/Pro for the Project Mathematical modelling /CircuitDe Final simulation/Hardware presentation Final Viva-Voce and	pposal esign e	10% 20% 20%	50%			
List of Practical	2 3 End Semester	Literature review/Pro for the Project Mathematical modelling /CircuitDe Final simulation/Hardware presentation Final Viva-Voce and demonstration	pposal esign project	10% 20% 20%	50%			

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Note:

- 1. No additional fees will be charged for students opting for Honours/ Minor Degree
- 2. All the courses in the Honours/ Minor will be conducted in offline mode.
- 3. Re-examination is not applicable in Honours and Minor Scheme. Student failing in any of the Minor or Honours courses, at any stage will be discontinued from the Scheme.
- Examination Scheme and Passing rules will be as per the academic rules and regulations of B. Tech.

Maharashtra Institute of Technology (An Autonomous Institute) Proposed Honours* in Surface Coating Technology Major Disciplines Bachelor of Plastic and Polymer Engineering (With effect from A.Y. 2022-23)

	Honours in Surface Coating Technology															
•	Course Code	Course	T Ho	Feachi Schem urs / V	ng 1e Veek		Exa	minati	on Sch	eme ar	nd Ma	rks		Cre	dit Sc	heme
Year & Semester			Theory	Tutorial	Practical	Mid-Semester-1	Mid-Semester-2	CIE	Teachers Assessment	End-Semester	Term work	Practical	Total Marks	Theory / Tutorial	Practical	Total Credit
SY IV	PPE901	Introduction to Paint Technology	04			15	15	10	10	50			100	04		04
	PPE971	Laboratory			02						25		25		01	01
		Total	04	-	02			10	0		25		125	04	01	05
	Total Credits=05															
TY V	PPE902	Corrosion Science and Technology	04			15	15	10	10	50			100	04		04
		Total	04	-	-			10	0				100	04		04
	-		_		-				-	-			-	Total (Credit	s=04
TY VI	PPE903	Coating Technology	04			15	15	10	10	50			100	04		04
	PPE972	Laboratory			02						25		25		01	01
		Total	04		02			10	0		25		125	04	01	05
														Total (Credit	s=05
Final B. Tech. VII	PPE904	Advanced Surface Coating Technology	04			15	15	10	10	50			100	04		04
		Total	04					100)				100	04		04
	Total Credits=04															
Final B. Tech.	PPE973	Mini Project			04						25	25	50		02	02
VIII		Total			04						25	25	200		02	02
	1	1					1	1						Total (Credit	s=02
		Total	Cred	lit for	Sem	este	er IV	+V+V	I+VII +	-VIII=	20					

Maharashtra Institute of Technology, Aurangabad									
(An Autonomous Institute)									
Department of Plastic and Polymer Engineering									
Syllabus of SY B. Tech. (Honours* in Surface Coating Technology) Semester IV									
Course Code	: PPE901	Credits: 4-0-0							
Course: Intro	duction to Paint Technology	Mid Semester Examination-I: 15 Marks							
Teaching Scheme:		Mid Semester Examination-II: 15 Marks							
Theory: 04	Hrs/week	Continuous Internal Evaluation: 10 Marks							
Tutorial: 00 Hr/week		Teacher Assessment: 10 Marks							
Practical: 02	Hrs/week	End Semester Examination: 50 Marks							
		End Semester Examination (Duration): 2 Hrs							
Prerequisite	Basics of Polymer Chemis	try							
	• The students will	have basic understandings of the commonly used							
Objectives	terminologies, variou	s ingredients and their role in paint formulations.							
Objectives	• The students will hav	e in-depth exposure to manufacturing, characterizations,							
	and applications of p	aint.							
	Introduction:								
	Definition, importance, classification of paint, basic concept and definition of								
	monomer; polymer; oli	gomer; telomer; macromolecules; functionality;							
Unit-I	polymerization. Molecular	weight of polymer: its distribution and determination,							
	classification of Polymer. St	ructure and property of polymer.							
		(10 Hrs)							
	Components of paint:								
	Base, Binders: Chemistry an	d Technology of Synthetic resins viz. Alkyds, Polyester,							
T] * 4 TT	Phenolics, Amino, Acrylic &	Vinyl resins: Raw materials for these resins, Chemistry							
Unit-11	of synthesis of these resins, p	rocessing techniques, properties & applications of these							
	resins for surface coatings. F	igments, Filler, drier, thinner, extenders, solvents etc.							
		(8 Hrs)							
	Paint Manufacturing:								
	Principles of paint formula	ation, steps in paint manufacture- mixing, grinding,							
Unit III	letdown, thinning, tinting (shade matching), straining, phenomenon of wetting,								
01111-111	grinding and dispersion. Pai	nt manufacturing methods and equipments: sand mill,							
	ball mill, high speed disperse	er (HSD). General hazards.							
(6 H									
	Surface modification and p	aint application methods:							
Unit-IV	Importance of surface prep	aration, various surface preparation methods such as							
	chemical, electrochemical, n	nechanical like sand blasting, shot peening, vapor phase							
	degreasing	degreasing, carburizing, nitriding, cyaniding, hot dipping, galvanizing, chromating,							
------------	-------------------------------------	--	-----------------------	--------------------	---------------------------	--	--	--	--
	anodizing,	phosphating etc. Lase	r assisted surface m	odification, Pa	int application				
	and curing	methods, paint defects:	settling, skinning, o	range peals, pi	n holes, crater,				
	etc.								
					(8 Hrs)				
	Additive used in paint formulation:								
Unit-V	Definition	Definition and function of additives, use of wetting and dispersing agents, anti-skin,							
	rheology 1	nodifier (flow promot	er, sag, leveling ag	gents, shear th	nickener, shelf				
	stability pr	romoter etc.), mar resist	ance, anti-foam, anti	-settling, corro	osion inhibitor,				
	biocide, ad	hesion promoter and ph	noto-stabilizers.						
					(8 Hrs)				
	Character	ization:							
	Viscosity,	specific gravity, dryi	ng time, hardness	(pencil hardne	ess, pendulum				
	harness, s	scratch hardness etc.)	, brief idea abou	t rheological,	optical and				
Unit-VI	morpholog	ical characterization of	f paint, thermal barr	ier, corrosion,	chemical and				
	weather res	weather resistance properties.							
		(8 Hrs)							
	Sr. No.	Title	Author	Publication	Edition				
	1.	Basics of Paint	V.C. Malshe		1 st 1 2000				
		Technology, Vol I	v.c. ividišne		1 st ed. 2000				
	2.	Basics of Paint							
		Technology, Vol II	V.C. Malshe		1 st ed. 2008				
	3.	Introduction to Paint		Chapman & Hall.	a rd 1 1000				
		Chemistry & Principle	Turner G.P		3 rd ed., 1988				
		of Paint Technology			and				
References	4.	Paints and Surface	R.Lambourne,TA	Fleevier	2 nd				
		Coatings	Strivens		edition,				
					1999				
	5.	Testing of paints :							
		technical analysis of	Shreekant Patil	Colour Pub	2009				
		paints and paint raw							
		materials							
	6	Paint flow and							
		pigment dispersion.	I.C. Patton		2 nd ed,1979				
	7	Outlines of Paint							
	/	Technology	W.M. Morgans		3 rd Ed.				
		1 connorogy							

Maharashtra Institute of Technology, Aurangabad

(An Autonomous Institute)

Department of Plastic and Polymer Engineering

Syllabus of SY B. Tech. (Honours* in Surface Coating Technology) Semester IV

Credits: 0-0-1

Term Work: 25 Marks

Course Code: PPED971

Course: Laboratory Introduction to Paint Technology

Teaching Scheme:

Practical: 2 Hrs/week

List of Practical (Any 8 practical to be conducted)

- 1) Synthesis & characterization of various surface coating resins.
- 2) Preparation of different architectural & industrial coatings.
- 3) Preparation of organic & inorganic pigments.
- 4) Paint application & curing, shade matching.
- 5) Determination of acid value, iodine value and saponification value of oils.
- 6) Determination of the physical properties of liquid paints, varnishes & lacquers such as color, weight per liter, fineness of grind, viscosity, non volatile content, spreading capacity.
- 7) Determination of the physical properties of dry films of paints, varnishes & lacquers
- 8) Determination of mechanical properties of dry film paints, varnishes & lacquers.
- 9) Determination of optical properties of dry films of paints, varnishes & lacquers.
- 10) Determination of chemical resistance properties of dry films of paints, varnishes & lacquers.

Maharashtra Institute of Technology, Aurangabad

(An Autonomous Institute)

Department of Plastic and Polymer Engineering

Syllabus of TY B. Tech. (Honours* in Surface Coating Technology) Semester V

Course Code: PPE902	Credits: 4-0-0	
Course: Corrosion Science and	Mid Semester Examination-I: 15 Marks	
Technology	Mid Semester Examination-II: 15 Marks	
Teaching Scheme:	Continuous Internal Evaluation: 10 Marks	
Theory: 04 Hrs/week	Teacher Assessment: 10 Marks	
Tutorial: 00 Hr/week	End Semester Examination: 50 Marks	
	End Semester Examination (Duration): 2 Hrs	

Prerequisite Physical chemistry of materials. Objectives To enable the students to understand the methodologies for predicting, measuring, and analyzing corrosion performance of materials. To enable the students to identify various methods of corrosion prevention. Introduction: Electrochemical and thermodynamic principles, electrode potential of metals, EMF and galvanic series, Faraday's laws, Theory of corrosion, action of corroding environment. (6 Hrs) Electrochemical Kinetics of corrosion: Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. (9 Hrs) Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in space environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs) (8 Hrs)	D					
Objectives• To enable the students to understand the methodologies for predicting, measuring, and analyzing corrosion performance of materials. • To enable the students to identify various methods of corrosion prevention.Unit-IIntroduction: Electrochemical and thermodynamic principles, electrode potential of metals, EMF and galvanic scries, Faraday's laws, Theory of corrosion, action of corroding environment. Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. (9 Hrs)Unit-IIICorrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in space environment. (9 Hrs)Unit-IIVForms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)	Prerequisite	Physical chemistry of materials.				
Objectives measuring, and analyzing corrosion performance of materials. Objectives • To enable the students to identify various methods of corrosion prevention. Introduction: Electrochemical and thermodynamic principles, electrode potential of metals, EMF and galvanic series, Faraday's laws, Theory of corrosion, action of corroding environment. Unit-I Electrochemical Kinetics of corrosion: Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		• To enable the students to understand the methodologies for predicting,				
Unit-II • To enable the students to identify various methods of corrosion prevention. Unit-II Introduction: Electrochemical and thermodynamic principles, electrode potential of metals, EMF and galvanic series, Faraday's laws, Theory of corrosion, action of corroding environment. (6 Hrs) Unit-II Electrochemical Kinetics of corrosion: Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. (9 Hrs) Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Unit-III Forms of Corrosion: Unit-III Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)	Objectives	measuring, and analyzing corrosion performance of materials.				
unit-I Introduction: Unit-I Electrochemical and thermodynamic principles, electrode potential of metals, EMF and galvanic series, Faraday's laws, Theory of corrosion, action of corroding environment. unit-II Electrochemical Kinetics of corrosion: Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. (9 Hrs) Unit-II Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Unit-IIV Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		• To enable the students to identify various methods of corrosion				
Introduction: Electrochemical and thermodynamic principles, electrode potential of metals, EMF and galvanic series, Faraday's laws, Theory of corrosion, action of corroding environment. (6 Hrs) Electrochemical Kinetics of corrosion: Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Unit-III Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description.		prevention.				
Unit-IElectrochemical and thermodynamic principles, electrode potential of metals, EMF and galvanic series, Faraday's laws, Theory of corrosion, action of corroding environment. (6 Hrs)Unit-IIElectrochemical Kinetics of corrosion: Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. (9 Hrs)Unit-IIICorrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs)Unit-IIVForms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description.		Introduction:				
Unit-I EMF and galvanic series, Faraday's laws, Theory of corrosion, action of corroding environment. (6 Hrs) (6 Hrs) Unit-II Electrochemical Kinetics of corrosion: Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. Unit-II Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Forms of Corrosion: Nunit-IIV Forms of Corrosion: (8 Hrs) (8 Hrs)		Electrochemical and thermodynamic principles, electrode potential of metals,				
corroding environment. (6 Hrs) (6 Hrs) (6 Hrs) Unit-II Electrochemical Kinetics of corrosion: Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. (9 Hrs) Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Unit-III Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)	Unit-I	EMF and galvanic series, Faraday's laws, Theory of corrosion, action of				
(6 Hrs) Unit-II Electrochemical Kinetics of corrosion: Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. (9 Hrs) Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Unit-IIV Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		corroding environment.				
Unit-II Electrochemical Kinetics of corrosion: Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. (9 Hrs) Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		(6 Hrs)				
Unit-II Corrosion rate expressions, exchange current density, polarization, passivity, electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. (9 Hrs) (9 Hrs) Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		Electrochemical Kinetics of corrosion:				
Unit-II electrochemical behaviour of active-passive metals, factors governing metals exhibiting passivity, mixed potential theory and its application. (9 Hrs) (9 Hrs) Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. Unit-IIV Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		Corrosion rate expressions, exchange current density, polarization, passivity,				
unit-III exhibiting passivity, mixed potential theory and its application. (9 Hrs) Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)	Unit-II	electrochemical behaviour of active-passive metals, factors governing metals				
Unit-III (9 Hrs) Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		exhibiting passivity, mixed potential theory and its application.				
Unit-III Corrosion in industries: Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		(9 Hrs)				
Unit-III Corrosion in fossil fuel & power plants, automotive industry, aerospace industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		Corrosion in industries:				
Unit-III industry, chemical processing industries, corrosion in petroleum production operations and refining, corrosion of pipelines. Corrosion in space environment. Unit-IIV Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		Correction in fassil fuel & power plants, automotive industry, acrospage				
Unit-III Industry, chemical processing industries, corrosion in perioreum production operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		consistent in rossin fuer & power prants, automotive industry, aerospace				
Operations and refining, corrosion of pipelines. Corrosion in space environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)	Unit-III					
environment. (9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		operations and refining, corrosion of pipelines. Corrosion in space				
(9 Hrs) Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		environment.				
Forms of Corrosion: Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		(9 Hrs)				
Unit-IV Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		Forms of Corrosion:				
Unit-IV intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and high temperature oxidation-description. (8 Hrs)		Atmospheric, galvanic, crevice, pitting, stress corrosion cracking,				
high temperature oxidation-description. (8 Hrs)	Unit IV	intergranular corrosion, corrosion fatigue, cavitation, fretting corrosion and				
(8 Hrs)		high temperature oxidation-description.				
		(8 Hrs)				

	Corrosion prevention:						
	Corrosion prevention by design improvements, material selection, anodic and						
	cathodic protection, metallic, non-metallic and inorganic coatings,						
Unit-V	mechani	cal and chemical	methods and vari	ous corrosion in	nhibitors,		
	pigment	s, binders & addit	ives for corrosion	prevention, re	cent developments		
	in corros	sion protection ma	terials				
					(8 Hrs)		
	Corrosion measurement & testing:						
	Purpose	of testing, laborat	ory, semi-plant a	nd field tests, su	sceptibility tests of		
I mit_VI	Intergram	nular corrosion, str	ress corrosion cra	cking and pittin	g, ASTM standards		
	for corre	osion testing; pola	rization methods	to measure cor	rosion rate, surface		
	characterisation techniques.						
					(8 Hrs)		
	Sr. No.	Title	Author	Publication	Edition		
			Tuttion	1 ublication	Luition		
	1.	Principles and		Prentice			
		Prevention of	D. A. Jones	Hall, USA.	2nd edition, 1996		
References		Corrosion					
	2.	Corrosion		McGraw-			
		Engineering	Fontana, M.G.	Hill, USA	3 rd edition		
	3	Corrosion	Samuel		1 st		
	5.	Control	A Bradford	Springer	edition 1993		
	4.	Fundamentals					
		of corrosion:					
		mechanisms.	Philip A.		1 st		
		causes, and	Schweitzer	CRC Press	edition,		
		preventative			2009		
		methods					

	Maharashtra Institute of Technology, Aurangabad				
	(An Autonomous Institute)				
	Department of Plastic and Polymer Engineering				
Syllab	ous of TY B. Tech. (Honours* in Surface Coating Technology) Semester VI				
Course Code:	PPE903 Credits: 4-0-0				
Course: Coati	ng Technology Mid Semester Examination-I: 15 Marks				
Teaching Sch	eme: Mid Semester Examination-II: 15 Marks				
Theory: 04 H	Hrs/week Continuous Internal Evaluation: 10 Marks				
- Tutorial: 00 H	Hr/week Teacher Assessment: 10 Marks				
	End Semester Examination: 50 Marks				
	End Semester Examination (Duration): 2 Hrs				
Prerequisite	Basics of paint technology				
	• To make the students aware of the essential components of paints and				
Objectives	coatings				
Objectives	• To make the students familiar with the basic and recent advancements in				
	coating technologies				
	Introduction:				
	Concepts & terminologies, classification of coatings interfacial tension, free				
Unit-I	energy changes, wetting, dispersion, cohesive and adhesive forces, chemistry &				
	technology of surfactants.				
	(6 Hrs)				
	Technology of water based paints & coatings:				
	Preparation of latex for paints, chemistry and technology of emulsion and latex				
Unit-II	paints, developments in waterborne coating				
	(6 Hrs)				
	Various surface coatings:				
	Preparation and characteristics of Coil coating, UV cured coating, Anti-corrosive				
I Init-III	coating Non stick coating Automotive coating Road marking coating Insulating				
	coating Metallic coating Leather coating and Eiro retordant/Eiro resistive coating				
	(12 Hrs)				
	Powder contings Verniches and Languars:				
IInit IV	Powder coating, variantes and Lacquers.				
Umi-1v	Powder coating, Dry distempers, Cement paints, On based distempers and paints,				
	Other still paints, Putties, Technology of manufacturing varnishes, facquers and				
	their applications.				
	(8 Hrs)				
	Technology of construction chemicals:				
Unit-V	Adhesives & sealants, Waterproofing compounds, and Polymeric additives for				

	concrete	e admixtures.						
	Specific application of paints and coatings:							
	Wood finishes, Road marking paint and Novelty finishes							
	(6 Hrs)							
	Study o	f important characte	eristics of surface co	ating :				
	Rheolog	cical properties, Optic	cal properties, Adhes	ion and mecha	nical properties,			
	Corrosic	on and chemical resist	ance properties, Film	thickness, Liqu	id paint analysis			
Unit-VI	accordin	ng to ASTM, BIS and I	BS standards, Charact	erization of var	nishes according			
	to ASTN	A, BIS and BSS Stand	lards.					
					(10 Hrs)			
	Sr. No.	Title	Author	Publication	Edition			
	1.	Chemistry, Materials						
		and Properties of	Gungor Gundoz	Destech Pub				
		surface coatings						
	2.	Surface Coating	ogy NPCS Board B	Asia Pacific				
		Technology		Business Press				
		Handbook						
	3.	Madam Tashralam	, ,	National				
		of Deinte, Vernishee		Institute Of	Ionuomi 2005			
		& Lacquers	INIIK BOAIU	Industrial	January 2003			
		& Lacquers		Research				
References	4.	Paints and Surface	R. Lambourne, TA Strivens		2 nd			
		Coatings		Elsevier	edition,			
					1999			
	5.	Testing of paints :						
		technical analysis of	Shreekant Patil	Colour Pub	2000			
		paints and paint raw			2009			
		materials						
	6.	Coating Technology	Edited by Arthur A.	Taylor &	3 rd Edition			
		Handbook	Tracton	Francis	2005			
	-				2003			
	/.	Madaur C. C	Edited by F. W.					
		Modern Surface	Bach, K. Mohwald,	WILEY-VCH	2006			
		rechnology	A. Laarmann, T.					
		L						

Maharashtra Institute of Technology, Aurangabad

(An Autonomous Institute)

Department of Plastic and Polymer Engineering

Syllabus of TY B. Tech. (Honours* in Surface Coating Technology) Semester VI

Course Code: PPED972

Course: Laboratory Coating Technology

Teaching Scheme:

Practical: 2 Hrs/week

Credits: 0-0-1 Term Work: 25 Marks

List of Practical (Any <u>8</u> practical to be conducted)

1. To determine opacity of paint film.

2. To determine the drying time of a paint film.

3. To determine the temperature stability of paint film.

4. Determining the washability and cleanability of paint film.

5. Evaluate alkyd resin based on long, medium and short oil alkyd and phthalic content.

6. Analyse synthetic enamel based on its gloss and scratch resistance.

7. To test the solvent, acid, alkali and light resistance of pigments.

8. Formulate a paint using different pigment value concentration values.

9. Analyse emulsion paint for its non volatile matter content and % solids content.

10. Analyse a synthetic enamel based on its corrosion resistance by salt spray.

Maharashtra Institute of Technology, Aurangabad				
(An Autonomous Institute)				
Department of Plastic and Polymer Engineering				
Syllab	us of Final Year B. Tech. (Honours* in S	Surface Coating Technology) Semester VII		
Course Code: PPE904 Credits: 4-0-0				
Course: Ad	vanced Surface Coating Technology	Mid Semester Examination-I: 15 Marks		
Teaching Se	cheme:	Mid Semester Examination-II: 15 Marks		
Theory: 4 H	Irs/week	Continuous Internal Evaluation: 10 Marks		
Tutorial: 0	0 Hr/week	Teacher Assessment: 10 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 2 Hrs		
Prerequis	• Physical chemistry of materials.			
ite	• Fundamentals of paint technology	y.		
	• Basics of corrosion science and to	echnology		
	• To develop understanding of vari	ous surface modification techniques to improve		
	the surface properties and to evaluate their properties			
Objective	• To provide a comprehensive overview of the latest developments in thin films			
s	• To develop competence and skills to select the suitable thin film deposition			
5	techniques/surface modification methods for a certain application			
	• To understand the types and uses of advanced coatings, their application, and			
	associated quality control			
	Surface modification techniques:			
	Surface engineering by material remo	val and material addition; Surface modification		
	of ferrous and nonferrous metals- carburizing, nitriding, cvaniding, hot dipping			
Unit-I	galvanizing, chromating, anodizing, phosphating of aluminium: Surface engineering			
	by energy beams, Plasma for surface engineering, Laser assisted surface modification			
	(8 Hrs)			
	Film deposition techniques:	× ′		
	Sputter deposition of thin films and co	atings by RF, MF, DC, Magnetron, Pulsed laser.		
	Ion beam. Ion implantation electro	plating electroless plating electro polishing		
Unit-II	electroforming chemical vapour deposition (CVD) and plasma aphanced CVD			
	atomic layer deposition atomic layer	chemical vapour deposition molecular beam		
	enitaxy lithography Langmuir Blodg	ett Spin coating		
	eprendy, nerography, Dangman 2104g	(8 Hrs)		
	Inter diffusion reactions and transf	formations in thin films.		
Unit-III	Fundamentals of diffusion Inter-diffu	ision in thin metal films. Mass transport in thin		
	films: Properties and characterization of this films, entired clastical machanization			
	mins, rroperues and characterization of unit mins- optical, electrical, mechanical and			

	magr	magnetic, structural morphology of deposited films and coating						
		(8 Hrs)						
	Surface engineering of nanomaterials:							
Unit-IV	Hybr	idization of nanomaterial	s, microencapsulation, s	ynthesis, process	ing and			
	chara	acterization of nanostructure	ed coatings and their applic	ation				
					(8 Hrs)			
	Various smart coatings:							
	Elect	rodeposition coating, Hygi	ienic coating, High tempe	rature coating, A	erospace			
Unit-V	coati	ng, Thermal sensitive coa	ating, Electrical conduction	ng coating, Optio	cal fiber			
	coati	ng, Pharmaceutical tablet c	coating, Textiles for coatin	ig, Self cleaning	and self			
	nean	ng coatings.			(10 Hrs)			
	Mari	ine coatings:			(101113)			
	Fouli	ing of surfaces. Paint opt	imization, Paint formulat	ion, Surface pre	paration.			
Unit-VI	Theo	retical and practical coverage	ge, Paint application	, <u>I</u>	F ··· ·· · ,			
		1			(8 Hrs)			
	Sr.				Editio			
	No.	Inte	Autnor	Publication	n			
	1.	Coating Technology	Edited by Arthur A.	Taylor &	3 rd			
		Handbook	Tracton	Francis	Edition			
					, 2005			
	2.	Modern Surface Technology	Edited by F. W. Bach,					
			K. Monwald, A.	WILEY-VCH	2006			
			Laarmann, 1. wenz					
Dofonono	3.		Edited by Friedrich-	WILEY-VCH				
Kelerenc		Modern Surface	Wilhelm Bach, Andreas	Verlag GmbH				
C 5		Technology	Laarmann, and Thomas	& Co. KGaA,	2006			
			Wenz	Germany				
	4	Frontiers of Thin Film	M. H. Francombe, S.	Germany				
		Technology,	M. Rossnagel, A.	Academic	2001			
			Ulman	press, Vol. 28				
	5.			McGraw Hill,				
		Thin Film Phenomena,		R.F. Bunshah				
		Deposition Technologies	K. L. Chopra,	Noyes	1982			
		for Films and Coatings		Publications,				
				New Jersey				

6.	Materials Science of	M Ohring	2nd ed.,	2002			
	Thin Films	Wi. Ohining	Academic	2002			
7.	Electronlating		McGraw Hill,				
	Licenoplating	F. A. Lowenheim,	New York,				
			1978				
8.	Introduction to	B Bhushan	John &Sons,	2002			
	Tribology	D. Dhushan	New York	2002			
9.			3rd ed.,				
	Engineering Tribology	G.W. Stachowiak,	Elsevier-	2005			
	Engineering Thoology,	A.W. Batchelor,	Butterworth-	2003			
			Heinemann,				
10	ASM Metals Handbook		American				
	Surface Engineering		Society for	100/			
	Surface Engineering,	-	Metals, Vol.5,	1994			
			9th ed.,				
11	Nanomaterials and	Edited by Jamal	John Wiley &	ż			
	Surface Engineering,	Takadoum	Sons, Inc.,	-			
		Takadoum	USA				
12	Marine Paint	Marine Paint					
	Web link: https://www.mistra.org/wp-content/uploads/2010/10/Marine-Paint-						
	FinalReport_2003-2011-ENG.pdf						
13				Shanghai			
		Marine Coatings, HILONG Web link:					
	Marine Coatings, HILON						
	Web link:						
	http://en.hilonggroup.com	http://en.hilonggroup.com/uploads/files/MARINE%20Coatings%					
	20Brochure.pdf			-			

Maharashtra Instit	ute of Techno	logy, Aurangabad
--------------------	---------------	------------------

(An Autonomous Institute)

Department of Plastic and Polymer Engineering

Syllabus of Final Year B. Tech. (Honours* in Surface Coating Technology) Semester VIII

Course Code: PPE973	Credit: 0-0-2
Course: Mini Project	Teamwork: 25 Marks
Teaching Scheme:	Practical: 25 Marks
Practical: 04 Hrs/week	

Objectives• To carry out a mini project and simple prototype in the area of interest based
on knowledge gained in Surface Coating Technology. There will be three
major reviews which will be carried out as listed below.

Review	Requirement	ement Mark		Weightage	
		Internal	External		
0	Area / Title selection	-	-		
1	Literature Review/Proposal for the mini project	10%	-		
2	Prototype Modelling	20%	-		
3	Final working presentation of project	20%	-		
End semester	Final viva project demonstration	-	50%		

The assessment of term work shall be done on the basis of the following.

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Note:

- 1. No additional fees will be charged for students opting for Honours/ Minor Degree
- 2. All the courses in the Honours/ Minor will be conducted in offline mode.
- 3. Re-examination is not applicable in Honours and Minor Scheme. Student failing in any of the Minor or Honours courses, at any stage will be discontinued from the Scheme.
- Examination Scheme and Passing rules will be as per the academic rules and regulations of B. Tech.