G. S. Mandal's Maharashtra Institute of Technology, Aurangabad. Department of Civil Engineering

Highway Engineering (CED 403)

(Class : B. Tech. final year)

Mr. Bhupal I. Welke

(Assistant Professor)

M. Tech. (Transportation Engineering & Planning) SVNIT, Surat. welkebhupal@gmail.com (8055698750)

Design of Flexible & Rigid Pavement

Contents:

B. Design of Rigid Pavement.

- Design parameter.
- Westergaard Stress: Wheel Load, Temperature Stresses.
- Design of Joints in Rigid Pavement.

Difference between Flexible & Rigid Pavement			
Sr. No.		Flexible Pavement	Rigid Pavement
1	IRC Code	• IRC: 37	• IRC: 58
2	Layers	 Surface Coarse (BC) Base Coarse (WBM or WMM) Subbase Coarse (GSB) Subgrade (C-φ Soil). 	 Surface Coarse (PCC or RCC) Base Coarse (DLC or WMM) Subgrade (C-φ Soil).
3	Load Transformation	• Load Transformation is grain to grain.	• Load Transformation is layer to layer.
4	Failure Nature	• If there is any failure at bottom layer then the failure will be appear at top.	• If there is any failure at bottom layer then for small cavity slab will act as a bridge over it.
5	Joints	• Joints are absent.	• Joints are present.
6	Cost	• Initial cost is low but maintenance cost is high.	• Initial cost is high but maintenance cost is low.

Stresses in Rigid Pavement

- 1. Load Stress: Due to load.
- 2. Temperature stress:
- Warping stress: Due to day night temperature variation.
- Frictional stress: Due to seasonal temperature variation.

Design Parameter:

- 1. Modulus of subgrade reaction: (k)
- $k = (p/\Delta) = (p/0.125) kg/cm^3$ $\Delta = 0.125 cm$

Where, p = Contact pressure or tyre pressure in kg/cm^2

 $k = kg/cm^3$ $\Delta = 0.125 \ cm$

2. Radius of Relative stiffness:
$$l(in \ cm) = \left(\frac{Eh^3}{12k(1-\mu^2)}\right)^{1/4}$$

- 3. Equivalent Radius of Resisting section: b (in cm)
- Effective in resisting bending moment.
- Radius of effective area (b), resisting bending moment.
- E = Modulus of elasticity (Young's modulus) of slab (kg/cm²)
- *h* = *Thickness of slab or pavement (cm)*
- k = Modulus of subgrade reaction (kg/cm³)
- $\mu = Poisson's ratio$
- *a* = *Radius of contact area (Radius of wheel load distribution) in (cm)*

1. Load Stress: Stresses developed in concrete slab due to wheel load.Westergaard stress equation for wheel load:

Magnitude,

a. At interior: $Si = Wheel load stress at Interior location in kg/cm^2$

$$Si = \frac{0.316 P}{h^2} \left(4 \log_{10}(l/b) + 1.069\right)$$

b. At edge: $Se = Wheel load stress at edge location in kg/cm^2$

$$Se = \frac{0.502 P}{h^2} \left(4 \log_{10}(l/b) + 0.359\right)$$

c. At corner: $Sc = Wheel load stress at corner location in kg/cm^2$

$$Sc = \frac{3P}{h^2} \left(1 - \left(\frac{a\sqrt{2}}{l}\right)^{0.6} \right)$$

Where,

P = Wheel load (kg)

l = *Radius of relative stiffness (Pressure deformation characteristic of cement concrete) in (cm)*

- 2. Warping stress or Temperature stresses: in kg/cm²
- Warping stress is developed due to day-night temperature variation. Under warping, effective temperature gradient exist between top and bottom of slab.
 Magnitude,
- a. At Interior:

$$S(ti) = \frac{E * \alpha * T}{2} \left(\frac{Cx + \mu * Cy}{1 - \mu^2}\right)$$

b. At edge:

- Cx & Cy are the factor (Warping stress coefficient) which depends upon Lx/l & Ly/l respectively.
- *Lx* = *length of slab (Spacing between two transverse joint)*
- Ly = Width of slab (Spacing between two longitudinal joint)
- 3. Frictional Stress (Sf): Due to seasonal temperature variation in kg/cm²
- Frictional force developed by half of slab is resisted by tensile force at center.

•
$$Sf = \frac{f * \gamma * L}{2 * 10^4}$$

Where,

- *f* = *Coefficient of friction between pavement surface and subgrade soil.*
- *L* = *Length of pavement section.*
- $\gamma = Density = Weight/Volume in kg/cm^3$

- Frictional resistance at corner position is always zero.
- In summer season frictional stresses are developed which are compressive in nature. *Critical Combination of stresses:*
- 1. Critical combination for edge & interior location when pavement is constructed in summer.
- I & E (in Summer) = Wheel load stress + Temperature stress frictional stress
- Interior = Si + S(ti) Sf
- Edge = Se + S(te) Sf
- 2. Critical combination for edge & interior location when pavement is constructed in winter.
- I & E (in Winter) = Wheel load stress + Temperature stress + frictional stress
- 3. Critical combination of stresses at corner location.
- Corner = Wheel load stress + Temperature stress

Question:

- A pavement slab 22 cm thick is constructed over a soil subgrade having modulus of subgrade reaction of 18 kg/cm³. Spacing between transverse joints & longitudinal joints are 5.5 m & 4.2 m respectively. Find out the stresses due to lead, temperature & worst combination of stresses by using the following data.
- Wheel load (P)= 4500 kg
- *Temperature difference* $(T) = 20^{\circ}c$
- Radius of load contact (a) = 15 cm
- Elastic modulus of cement concrete $(E) = 3 * 10^5 \text{ kg/cm}^2$
- Poisson's ratio $(\mu) = 0.15$
- *Coefficient of friction* (f) = 1.5
- Coefficient of thermal expansion (α) = 12 * 10⁻⁶ per °c
- Cx = 1.05 & Cy = 0.9

Answer:

Given,
$$h = 22 \text{ cm}$$
, $k = 18 \text{ kg/cm}^3$, $Lx = 5.5 \text{ m}$, $Ly = 4.2 \text{ m}$

Step 1: Design parameter

$$k = p/0.125 = \frac{P/\mu a^2}{0.125} = \frac{\frac{4500}{\mu * 15^2}}{0.125} = 18 \text{ kg/cm}^3$$
$$l = \left(\frac{Eh^3}{12k(1-\mu^2)}\right)^{1/4} = \left(\frac{3 * 10^5 * 22^3}{12 * 18(1-0.15^2)}\right)^{1/4}$$

 $l = 62.36 \ cm$

$$b = \sqrt{1.6 a^2 + h^2} - 0.675 h = \sqrt{1.6 * 15^2 + 22^2} - 0.675 * 22$$

b = **14.20** *cm*

Step 2: Stresses

1. Wheel load stresses: (in kg/cm²)

a.
$$Si = \frac{0.316 P}{h^2} (4 \log_{10}(l/b) + 1.069) = \frac{0.316 * 4500}{22^2} (4 \log_{10}(62.36/14.20) + 1.069)$$

 $Si = 10.69 \ kg/cm^2$

b.
$$Se = \frac{0.502 P}{h^2} (4 \log_{10}(l/b) + 0.359) = \frac{0.502 * 4500}{22^2} (4 \log_{10}(62.36/14.20) + 0.359)$$

 $Se = 15.57 kg/cm^2$

c. At Corner,
$$Sc = \frac{3P}{h^2} \left(1 - \left(\frac{a\sqrt{2}}{l}\right)^{0.6} \right) = \frac{3*4500}{22^2} \left(1 - \left(\frac{15\sqrt{2}}{62.36}\right)^{0.6} \right)$$

 $Sc = 13.28 \ kg/cm^2$

2. Warping Stresses: (in kg/cm²)

a.
$$S(ti) = \frac{E * \alpha * T}{2} \left(\frac{Cx + \mu * Cy}{1 - \mu^2} \right) = \frac{3 * 10^5 * 12 * 10^{-6} * 20}{2} \left(\frac{1.05 + 0.15 * 0.9}{1 - 0.15^2} \right)$$

 $S(ti) = 43.64 \text{ kg/cm}^2$
b. $S(te) = \frac{Cx * E * \alpha * T}{2} OR \frac{Cy * E * \alpha * T}{2}$
 $S(te) = \frac{Cx * E * \alpha * T}{2} = \frac{1.05 * 3 * 10^5 * 12 * 10^{-6} * 20}{2}$
 $S(te) = 37.8 \text{ kg/cm}^2$
c. At Corner, $S(tc) = \frac{E * \alpha * T}{3(1 - \mu)} \sqrt{\frac{\alpha}{l}} = \frac{3 * 10^5 * 12 * 10^{-6} * 20}{3(1 - 0.15)} \sqrt{\frac{15}{62.36}}$
 $S(tc) = 13.84 \text{ kg/cm}^2$

3. Frictional Stresses:

$$Sf = \frac{f * \gamma * L}{2 * 10^4} = \frac{1.5 * 2400 * 5.5}{2 * 10^4} = 0.99 \ kg/cm^2$$

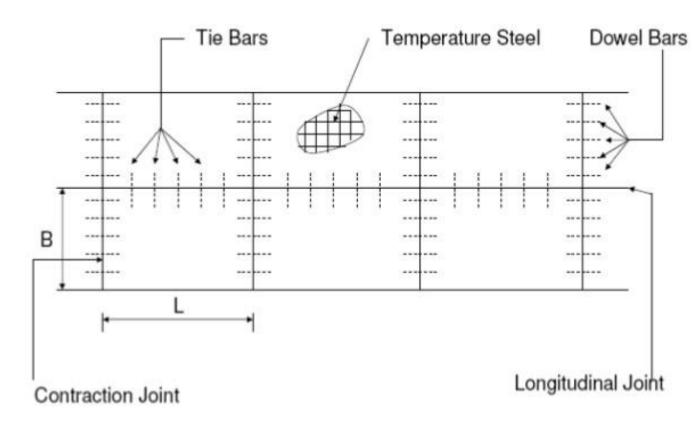
Step 3: Worst combination of stresses: (in kg/cm²)

• In Summer, (At Interior : S(I) = Si + S(ti) - Sf = 10.69 + 43.64 - 0.99 = 53.34

$$(At \ edge): S(E) = Se + S(te) - Sf = 15.57 + 37.8 - 0.99 = 52.38$$

• In Winter, (At Interior): S(I) = Si + S(ti) + Sf = 10.69 + 43.64 + 0.99 = 55.32

 $(At \ edge) : S(E) = Se + S(ti) + Sf = 15.57 + 37.8 + 0.99 = 54.36$


• At Corner, S(C) = Sc + S(tc) = 13.28 + 13.84 = 27.12


Design of Joints in Rigid Pavement:

- 1. Transverse joints: Provided in transverse direction of slab.
- a. Contraction Joints
- b. Expansion Joints
- 2. Longitudinal Joints: Provided in longitudinal direction of slab.

Jointed CC Pavement

• Contraction & expansion joints are provided in rigid pavement due to temperature variation. (Increases or decreases)

Contraction Joints:

• Provided in transverse joints to allow contraction of slab section with respect to construction temperature & decrease in temperature of slab.

Case 1: When PCC used (Without Dowel bar)

- Frictional force generated by half of slab = Resisting force by concrete at center
- $f(\gamma * \frac{L}{2} * B * h) = Sf * B * h$
- $\gamma = Density \ of \ concrete \ in \ kg/m^3$
- f = Coefficient of subgrade restrained = 1.5
- Sf = Allowable stress in tension in cement concrete in kg/cm²
- Spacing between two contraction joints:
- $L = \frac{2 * Sf}{\gamma * f} * 10^4$

• $L = \frac{2 * Sf}{\nu * f}$

As per IRC,

- The spacing between two contraction joint for PCC is ≤ 4.5 m Case 2: When Dowel bar used.
- Frictional force generated by half of slab = Resisting force by steel

•
$$f(\gamma * \frac{L}{2} * B * h) = \sigma(st) * A(st)$$

• $L = \frac{2 * \sigma(st) * A(st)}{\gamma * f * B * h}$

Where,

- $\sigma(st) = Allowable tensile stress in steel$
- A(st) = Area of steel provided for entire width of the pavement in cm²

Question:

• Design the spacing between two contraction joint if maximum tensile stress of concrete is 0.8 kg/cm^2 and coefficient of friction is 1.5 (Assume $\gamma = 2400 kg/m^3$)

Answer:

- $L = \frac{2 * Sf}{\gamma * f} * 10^4 = \frac{2 * 0.8}{2400 * 1.5} * 10^4$
- $L = 4.44 \ m \le 4.5 \ m$ (Safe)

Question:

- Calculate the spacing between contraction joints by using the following data.
- Width of slab (B) = 4.52 m
- Thickness of slab $(h) = 25 \ cm$
- Coefficient of friction (f) = 1.5
- Diameter of bar $(\phi) = 12 \text{ mm}$
- Spacing between the bar = 300 mm
- Allowable tensile stress in steel ($\sigma(st)$) = 1400 kg/cm²

Answer:

• Spacing between contraction joint:

•
$$L = \frac{2 * \sigma(st) * A(st)}{\gamma * f * B * h} = \frac{2 * 1400 * 18.09}{2400 * 1.5 * 4.52 * 0.25}$$

• L = 12.45 m

Expansion Joints:

- Provided in transverse direction to allow expansion of slab in longitudinal direction.
- As per IRC, the gap of expansion joint should be designed such that even after full expansion of pavement 50 % of gap should be maintained.
- Allowable expansion = $(\Delta/4 + \Delta/4) = \Delta/2 = L\alpha T$

•
$$L = \frac{\Delta}{2\alpha T} = Spacing between expansion joints.$$

Where,

• $\Delta = Gap$ of expansion joints. (Maximum expansion in slab section)

= Half of the gap provided for joint 2.5/2

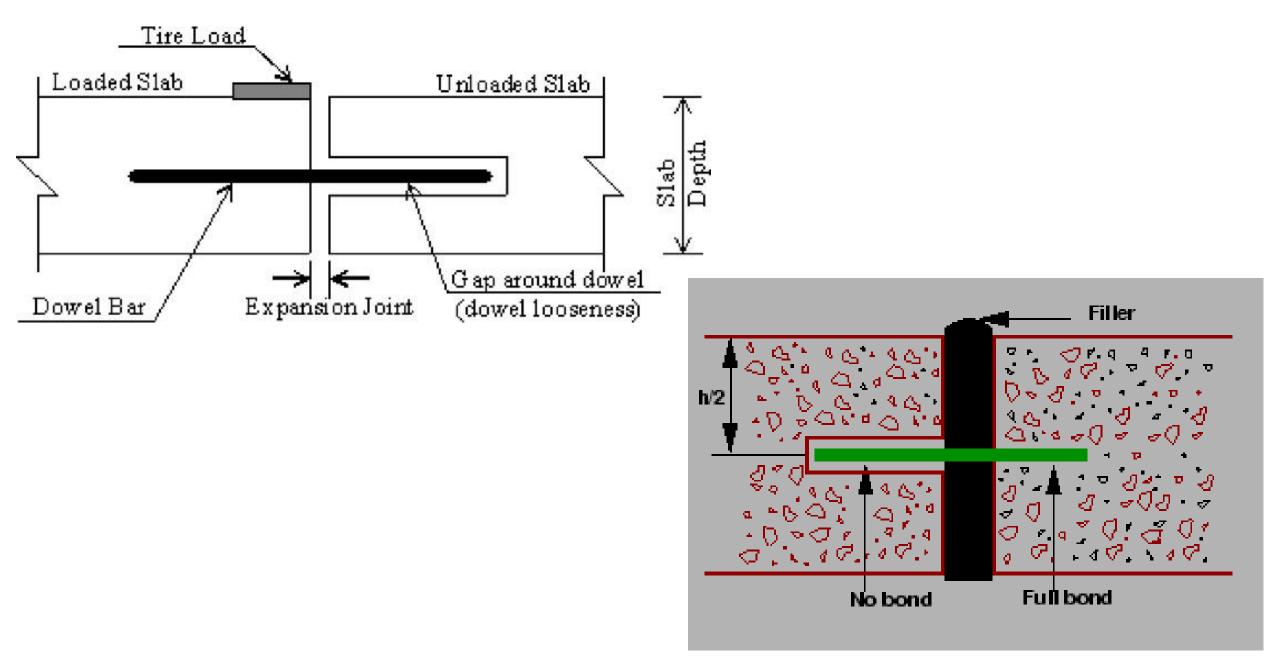
- α = *Coefficient of thermal expansion*
- *T* = *Change in temperature*

As per IRC,

- 1. Filler material for expansion joint must have 50 % compressibility in order to allow expansion of slab. (e.g. fiber board, cork)
- 2. The maximum gap provided, $\Delta \leq 2.5 \text{ cm}$
- *3. The maximum spacing between expansion joint,* $L \le 140 \text{ m}$
- Expansion joint provided to allow the expansion of pavement due to rise in temperature with respect to construction temperature.
- Dowel bars are provided only in expansion joint.
- The system of reinforcement transfer certain amount of load to next section is known as dowel bars.

Question:

• If the width if expansion joint is 2 cm & temperature at the time of construction of slab is 20°C, then find the spacing between expansion joints for a maximum temperature of 45° C. (Take $\alpha = 12 * 10^{-6}/^{\circ}$ C)


Answer:

• Given, $\Delta = 2 \ cm = 2 \ * \ 10^{-2} \ m$ $T = 45 - 20 = 25 \ ^{o}C$ $\alpha = 12 \ * \ 10^{-6} / ^{o}C$ L = ?• $L = \frac{\Delta}{2\alpha T} = \frac{2 \ * \ 10^{-2}}{2 \ * \ 12 \ * \ 10^{-6} \ * 25} = 33.333 < 140 \ m \ (Safe)$

Purpose to provide dowel bar:

- To transfer wheel load from one slab to another slab.
- To reduce the differential deflection.

• Arrangement of Dowel bar at expansion joint:

Longitudinal joints:

- Provided longitudinally along the road to account lateral expansion & contraction.
- Tie bars used at longitudinal joint to restrain slab against lateral sliding under dynamic effect of load due to vehicle movements expansion and contraction.

Design of tie bars:

• Frictional force generated by 1 m of slab = Resistive force by steel per (m) slab.

•
$$f * (\gamma * B * 1 * h) = \sigma(st) * A(st)$$

• $A(st) = \frac{f * (\gamma * B * h)}{\sigma(st)} = Area of steel in cm^2 required per metre slab.$
Where $\sigma(st) = ho/om^2$

where, $\sigma(st) = kg/cm^2$ • $B = Distance \ between \ free \ edge \ of \ the \ pavement \ and \ longitudinal \ joint.$ • $B = \frac{Width \ of \ pavement}{2}$, h in cm, f = 1.5, $\gamma = kg/m^3$

- Assume, diameter of tie bar = ϕ
- Number of tie bars per metre slab = $n = \frac{\text{Total area}}{\text{Area of 1 bar}} = \frac{A(st)}{(\frac{\pi}{4})*\phi^2}$
- Spacing between tie bar = S = 1000/n As per IRC,
- $\phi = Diameter \ of \ bar \leq 20 \ mm$
- $S = Spacing \ of \ bar \le 75 \ cm$
- Length of Tie bars (L_T) :
- Bond force at steel per m slab length = Tensile force in steel per (m) slab length.

$$\tau_{bd} * (n * \frac{L_T}{2} * \pi * \phi) = \sigma(st) * (n * \frac{\pi}{4} * \phi^2)$$
$$L_T = \frac{\sigma(st) * \phi}{2 * \tau_{bd}}$$

Where,

- τ_{bd} = Permissible bond stress of concrete in kg/cm²
- $\Phi = Diameter of tie bar in cm$

Question:

- Cement concrete pavement has a thickness of 24 cm & has two lane of width 7.2 m with a longitudinal joint in between. Design the dimension & spacing of the bar by using following data.
- Allowable tensile stress in steel = 1400 kg/cm²
- Unit weight of cement concrete = 2400 kg/cm^3
- *Coefficient of friction* = f = 1.5
- Bond stress between steel bar and concrete = 24.6 kg/cm^2

Answer:

- Given, f = 1.5, $\sigma(st) = 1400 \text{ kg/cm}^2$, $\gamma = 2400 \text{ kg/cm}^3$, B = (7.2/2) = 3.6 mh = 24 cm = 0.24 m, $\tau_{bd} = 24.6 \text{ kg/cm}^2$
- Area of steel required per metre slab

•
$$A(st) = \frac{f * (\gamma * B * h)}{\sigma(st)} = \frac{1.5 * 2400 * 3.6 * 0.24}{1400} = 2.22 \ cm^2 = 222 \ mm^2$$

• Assume, $\phi = 10 mm$

•
$$n = \frac{\text{Total area}}{\text{Area of 1 bar}} = \frac{A(st)}{\left(\frac{\pi}{4}\right)*\phi^2} = \frac{222}{\frac{\pi}{4}*10^2} = 2.82 \approx 3 \text{ number}$$

• Spacing, $S = 1000/n = 1000/3 = 333.33 \text{ mm} = 33.33 \text{ cm} \le 75 \text{ cm}$ (Safe)

• Length of Tie bar =
$$L_T = \frac{\sigma(st) * \phi}{2 * \tau_{bd}} = \frac{10 * 1400}{2 * 24.6} = 284.55 \text{ mm} = 28.49 \text{ cm}$$

