G.S. Mandal's

MAHARASHTRA INSTITUTE OF TECHNOLOGY

Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

<u>Part-I</u>

Class: T.Y.B.Tech (Autonomous)

Course: EED301 Control System Engineering

Course Outcomes

	By the end of the course the student will be able to:
C01	Able to Determine the mathematical modeling of physical systems and evaluate their transfer function of using block diagram and /or signal-flow graph techniques
CO2	Able to Interpret different physical and mechanical systems in terms of electrical system to construct equivalent electrical models for analysis. system (Understand)
CO3	Able to Employ the time-domain response of first and second order systems for various standard test signals and investigate their stability using time- domain techniques ions
CO4	Able to Analyze the system response and stability in time domain (Analyse)
C05	Able to Formulate different types of analysis in frequency domain to explain the nature of stability of the system
C06	Able to Design different types of controllers and compensator to ascertain the required dynamic response from the system

CO-PO-PSO Mapping

СО	PO	PO 2	РО	PO 4	РО	PO 10	PSO1	PSO2	PSO3
	1		3	A N	G 5				
CO1	2						2		
CO2		2	2				2		
CO3		2	2	ΜΙ	12				2
CO4	2	2	Que	st for E	x2el	lence			
CO5		2		2				2	2
CO6	1								1
Average	2	2	2	2	2		2	2	2
Mapping Strength	2	2	2	2	2		2	2	2

G.S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Class: T.Y.B.Tech (Autonomous)

Course: EED302 Microprocessor 8085

Course Outcomes

	By the end of the course the student will be able to:
C01	Explain the functionality of each architectural block of 8085 microprocessor
C02	Describe the assembly language instructions of 8085 microprocessor
CO3	Develop assembly language programs for 8085 microprocessor
C04	Interface semiconductor memory to 8085 microprocessor
C05	Interface various peripherals to 8085 microprocessor
C06	Design an 8085 microprocessor based system using ADC, DAC, Stepper motor, DC Motor & Relay using assembly language

CO-PO/PSO Mapping

	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	3												3		
CO2	3												3		
CO3		3											2	2	
CO4			2											2	2
CO5			2											2	2
CO6			2											2	2
Avg	3	3	2										2.66	2	2

G.S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY

Chhatrapati Sambhajinagar (An Autonomous Institute) Department of Electrical Engineering

Class: T.Y.B.Tech (Autonomous)

Course: EED303 Power Electronics

Course Outcomes

C01	Demonstrate the behavior of different switching devices (SCR, MOSFET, IGBT, GTO and TRIAC.) for construction, working, VI characteristics and switching characteristics. (Understand)
CO2	Demonstrate the operation of single phase controlled and uncontrolled rectifiers and analyze its characteristics and performance parameters with R and RL load (Analyze)
CO3	Demonstrate the operation of Three phase controlled and uncontrolled rectifiers and analyze its characteristics and performance parameters with R and RL load (Analyze)
CO4	Describe basic operation of chopper with control methods (Understand)
CO5	Demonstrate the operation of single phase inverter with different types and three phase inverter with different operating mode (Analyze)
C06	Illustrate the functioning of AC voltage controllers and cycloconverters(Analyze)

CO-PO-PSO Mapping

СО\РО	P01	P02	P03	P04	P09	P012	PSO1	PSO2
C01	3	2			1	1	1	
C02	1	3	3	2		1		1
CO3	1	3	3	2		1		1
CO4		Qu2st	for ² Ex	cellen	се	1		1
C05		3		2	1	1		1
C06	3					1		1
Average	2	2.4	2.6	2	1	1	1	1

Class: TY (Autonomous)

Name of the Course: EED304 Power Systems-I

Course Outcomes

	By the end of the course the student will be able to:
C01	Describe layout and operation of thermal and hydroelectric power plant & Evaluate
	plant economics
CO2	Calculate the transmission line constants of solid & composite conductors using the
	concept of GMD
CO3	Classify types of conductors and insulators also compare them based on the design
	specification & illustrate the effects caused by voltage & current
C04	Calculate the sending end and receiving end parameters of different (short, medium &
	long) types of transmission lines.
C05	Discuss the classification, requirements, design considerations, and calculation methods for AC and DC distribution systems
CO-PC	D/PSO Mapping

CO-PO/PSO Mapping

CO	P01	P02	P03	P04	P05	PSO1	PSO2
C01	3	2				2	
CO2	3	2				2	
	0	1V.	L L L Trace 11 -				
CO3	3	2	Excelle	nce		2	
CO4	3						1
C05	3					2	
Average	3	2				2	1
Mapping Strength							

G.S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY Chhatrapati Sambhajinagar

(An Autonomous Institute)

Department of Electrical Engineering

Part-II

Class: T.Y.B.Tech

Course: EED353 High Voltage Engineering

Course Outcomes

Sr. No.	By the end of the course the student will be able to:
	Summarize the concept of electric field stresses and applications of insulating
C01	materials for equipment like transformers, rotating machines, circuit breakers,
	cables, power capacitors & other equipment.
	Examine the effect of high voltage on breakdown strength of gaseous, solids and
CO2	liquid insulating materials.
CO3	Select appropriate insulation co-ordination levels based on highest rating of
	electrical equipment in substation.
C04	Analyze methods for generation and measurement of High Voltages and Currents (both ac and dc)
CO5	Explain non-destructive testing techniques in high voltage engineering based on
	IEC & IS.
CO-PO Ma	apping

CO-PO Mapping

POs		(Dom	ain De	penden	t)	N G	(D	omair	n Indep	oenden	it)	
POs COs	1	2	3	4	5	6	7	8	9	10	11	12
C01	3											1
C02	3			1	Ι	TIN	17					1
C03	3	1		2	iest jo	r Exce	llenc	e	1			1
C04	3			1					1			1
CO 5	3											1
СО	3	1		1					1			1

CO-PSO Mapping:

CO No.	PSO I	PSO II	PSO III
C01	3	-	1
CO2	3	-	1
CO3	3	1	1
CO4	3	1	1
CO5	3	-	1

MIT["] Quest for Excellence

Class: T.Y. (Autonomous)

Course: EED 352 Electrical Drives

Course Outcomes

	By the end of the course the student will be able to:
CO1	Analyze the dynamics of Electrical Drives system.
CO2	Use various control techniques for controlling the operation of Electrical Drive
CO3	Demonstrate the function of various DC Drive
CO4	Demonstrate the function of various Induction motor Drive
CO5	Demonstrate the function of various Synchronous motor Drive
CO6	Efficiently use various AC and DC drive.
CO-PO	/PSO Mapping

CO-PO/PSO Mapping

Course Code	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
	3	2	A		र्स शिक्षण	मंडल मंडल						
C01			5			L N	Ľ//.	- 5				
CO2	2				(J)	HH)						
CO3	2				E							
CO4	2				N	G						
C05	2				5	2						
C06	2			3								
Average	2	2		3								

G.S. Mandal's **MAHARASHTRA INSTITUTE OF TECHNOLOGY** Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Class: T.Y B.tech (Autonomous)

Course Name: EED351 Power System-II

Course Outcome

	By the end of the course the student will be able to:
	Develop the model of a given power system network using per unit reactance
CO1	diagram.
	Analyze the Load flow problem using iterative methods like Gauss Siedel,
CO2	Newton Raphson, Fast decoupled Methods.
	Evaluate the Symmetrical and unsymmetrical faults & infer the performance of
CO3	power system
	Develop and solve the positive, negative and zero sequence network for a given
CO4	system
	Identify the electrical power quality events and its mitigation techniques in
CO5	power system.

CO-PO Mapping:

Course Code	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
	3	2		2	रिश्वमण	ਸੰਤਰ			1			
CO1			5					-5				
CO2	2	-2	1	2	077	777	0					
CO3	2	2		2			~					
CO4	2			2	N	G						
C05	3						105					
Average	2.4	2		2								
CO DSO Manni	ng.								•	•	•	•

CO-PSO Mapping:

CO No.	PSO I	PSO II	PSO III
C01	2		
CO2	2		
CO3	1		
CO4		1	
CO5	2		
Average	1.7	1	

G.S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY Chhatrapati Sambhajinagar

(An Autonomous Institute)

Department of Electrical Engineering

CLASS: B.Tech EE

COURSE: EED 402 Advance Control Systems

Course Outcome:

	By the end of the course the student will be able to:
C01	Able to Represent a physical system in state space format. (Remember)
CO2	Able to Analyse various no-linear ties in physical system. (Understand)
CO3	Able to Design compensators using classical techniques (Apply)
C04	Able to Acquire knowledge of state space and state feedback in modern control systems, pole placement, design of state observers and output feedback controllers (Analyse)
C05	Able to Demonstrate non-linear system behaviour by phase plane and describing function methods (Analyse).
C06	Able to Design and analyse Digital feedback control systems using a range of techniques; (Create)

CO-PO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2			1	4	G	2			2		
CO2	1	2	2		2		2			1	2	2
CO3		2	2	1	2				2		2	2
CO4	2	2	1		2					2	2	1
CO5	1	2		2			м	2	2	1	2	
CO6	1	1	1		IV	1		1	1	1	1	1
Average	1.6	1.2	2	Qye	1.3	Exc	ellen	ce				2.66

CO-PSO Mapping

СО	PSO1	PSO2	PSO3
C01	1		
CO2	1	1	1
CO3	1	2	1
CO4	1	2	
CO5	1		2
C06	1	2	2
Average	1	1.75	1.5

