

G.S. Mandal's **MAHARASHTRA INSTITUTE OF TECHNOLOGY** Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

<u>Part-I</u>

Class: S.Y (Autonomous)

Course code & Course Title: BSC204 Linear Algebra & Transform

Course Outcomes

	By the end of the course the student will be able to:
C01	Find Laplace Transform of the given function
CO2	Make use of Complex Number to find roots, separate complex quantities and establish
	relation between circular and hyperbolic functions
CO3	Apply Matrix Technique to find solutions of system of linear equations
C04	Use Probability Distribution to find probability
C05	Apply higher order Linear Differential Equations in electrical and mechanical systems
C06	Apply Inverse Laplace Transform to initial value problems

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	3						2	N	1				1		
CO2	2											1	1		
CO3		3	3	2								1		1	
CO4	3								TM			1	1		
CO5		3	3	2		0		VI I 				1		1	
CO6	3					Que	si ji		cen	ence			1		
AVG															

G.S. Mandal's **MAHARASHTRA INSTITUTE OF TECHNOLOGY** Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Class: S.Y (Autonomous)

Course: EED202Electrical Measurement & Instrumentation

Course Outcomes

	Recall the characteristics of Measuring Instruments.
	Classify diverse electrical instruments based on their types & application with advantages & disadvantages
CO3 S	Solve the problems based on measuring instruments
CO4 <i>A</i>	Analyse the construction & working of different electrical measuring instrument
CO5 E	Experiment with the electrical devices for measuring power & resistances
CO6 1	Test the calibration of electrical measuring instruments.

CO-PO/PSO Mapping

2>			ज मंडल				1	1		
20								-		
					7 4 6		1	1	1	1
1	1	77	TH		7		1	1	2	1
1	1			Y		1/2	1	1	2	
2	5	N	G	~			2	1		2
				50			2	1	2	2
	1	1 1	1 1	1 1		1 1		1 1 1 2 2 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

MIT^T *Quest for Excellence*

Class: S.Y (Autonomous)

COURSE NAME-EED201 Electrical Machine-I

Course Outcomes

	By the end of the course the student will be able to:
C01	Define fundamentals of transformer and DC Machines.
CO2	Compare various parameters of electric machines.
CO3	Identify and organize characteristics of different electric machines.
C04	Analyse circuit model of electric machines.
C05	Justify various electric machines.
CO6	Construct the control operation and formulate various tests on electric machines.

	P0 1	P0 2	РО 3	P0 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO1 0	P01 1	P01 2	PS0 1	PS0 2	PSO 3
CO 1	2	2	1		\mathbf{N}		5	2					2		1
CO 2	1	1	2						12				1		1
CO 3	1		1										1		
CO 4	2			2										1	1
CO 5	1	1			0				11				1		
CO 6	1	1			Q	uesi	jor	EXC	ellei	ice			1		
AVG	1.3	1.3	1.3	1.5									1.2	1	1

Class: S.Y (Autonomous)

Course: EED203 Analog Electronics

Course Outcomes

	By the end of the course the student will be able to:
CO1	Define the parameters of Solid-State devices (I. Remembering)
CO2	Illustrate the Characteristics of Analog Devices (II. Understand)
CO3	Identify applications of Analog devices. (III. Apply)
CO4	Survey the analog devices used in various applications (IV.Analyze)
CO5	Demonstrate the experimental setup to determine parameters of analog devices. (II Understand)
CO6	Build small analog circuits using semiconductor devices. (III. Apply).

	P01	P0 2	PO 3	P0 4	P0 5	P0 6	РО 7	P0 8	РО 9	P01 0	P01 1	P01 2	PS0 1	PSO 2	PSO 3
CO1	2	-				7 ?				05		2			
CO2	2	2			Ň	2	22	NG	7	5		2			
CO 3	2	-										2			
CO4	2	-						X				-			
CO 5		-			2		Ι					2			
CO6	2	2				Que	st fo	r Ex	cell	ence		2			
AVG															

Class: S.Y (Autonomous)

Course: EED224 Fundamentals of MATLAB Programing

Course Outcomes

	By the end of the course the student will be able to:
CO 1	To be able to use MATLAB for demonstration of various arithmetic and logical operations.
CO2	To be able to apply knowledge of MATLAB in analysis of Electrical Engineering Circuits.

CO-PO/PSO Mapping

	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	2		1	2	2	\$ 1		ATT		1		1	1	2	
CO2	2	2	2		2	5	7	G	4	1		1	2	2	2
AVG							2	S							

MIT["] *Quest for Excellence*

Class: S.Y (Autonomous)

Course: EED225 Data Analytics

Course Outcomes

	By the end of the course the student will be able to:
C01	Write a program using R script
CO2	Understand regression, classification and clustering model

	P01	P0 2	РО 3	P0 4	РО 5	P0 6	P0 7	PO 8	РО 9	PO1 0	P01 1	P01 2	PS0 1	PSO 2	PSO 3
CO1		2	111		3 P			L) N					2		
CO2		2					I I I I I I I I I I I I I I I I I I I	11750	B	/	6	6	2		
AVG					L.		(F)	FFF							

Part-II

Class: S.Y (Autonomous)

Course: BSC251A Complex Variable & Vector Calculus

Course Outcomes

	By the end of the course the student will be able to:
CO1	Find the Fourier transform of given function
CO2	Express the function in Fourier series in different intervals
CO3	Discuss the function of complex variables
CO4	Make use of partial derivatives for differentiation of vector functions
C05	Evaluate vector integral by Stoke's theorem &Gauss theorem
CO6	Solve the difference equations by z-transform.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
C01	2	1					2	Ż	5				1		
CO2	2	1				X	2		5				1		
CO3	2	1						X	Ó				1		
C04	2	1							TM						
CO5	2	1				Oue	st fo	r Ex	celle	ence			1		
C06	2	1											1		
AVG	2	1											1		

Class: S.Y (Autonomous)

Course: EED 251 Electrical Machins-II

Course Outcomes

	By the end of the course the student will be able to:								
CO1	Describe operation of various types of AC machines. (remembering)								
CO2	Outline the performance of AC Machines for studying the torque-speed characteristics. (Understand).								
CO3	Formulate different tests for calculating the performance parameters of three phase induction motors. (Analyze)								
CO4	Calculate equivalent circuit models of AC electric machines. (Apply)								
CO5	Illustrate the electromagnetic laws for the operation of three phase synchronous (understand)								
CO6	Identify and compare AC machines as per applications. (Analyze).								
CO-PO/PSO Mapping									

CO-PO/PSO Mapping

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	3							HHH					1		
CO2		3	2	2		5		9	4					1	
CO3	3	3	2				$\dot{\gamma}$	G					1	1	
CO4	3	2	2	2		5	1						1	1	
CO5	3		2										1		
CO6	3		3										1		
AVG	3	2.6	2.2	2			N	ΙΙΤ					1	1	

Quest for Excellence

Class: S.Y (Autonomous)

Course: EED 252 Network Analysis

Course Outcomes

	By the end of the course the student will be able to:
CO1	List circuit laws and simplify the network using reduction technique.
CO2	Interpret the circuits using Kirchhoff's laws and network simplification techniques.
CO3	Solve transient response, steady state response, network function.
CO4	Derive maximum power transfer to the load and analyze the different circuits.
CO5	Evaluate network circuit parameters and validate them.
CO6	Design the circuits using network synthesis in time and frequency domain.

CO-PO/PSO Mapping

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	2	2	-	-				१शिण मंडल				6	2		-
CO2	3	2	-	1				H		7			3	2	-
CO3	2	1	-			~				05			2	-	-
CO4	1	1	-				۲ (G	7				2	-	-
CO5	2	2	-	- /	X		2	5					2	-	2
CO6	2	1	2	1		X								3	2
AVG	2	1.5	2	1				X	6				2.2	2.5	2

MIT[®] *Quest for Excellence*

Class: S.Y (Autonomous)

Course: EED 253 Signal & System

Course Outcomes

	By the end of the course the student will be able to:
CO1	Memorize the fundamentals of Signals and systems.
CO2	Outline the properties of systems using transforms (Laplace transform, Z-transform and Fourier transform)
CO3	Make use of fundamentals for analysis of the signals and systems
CO4	Analyse the systems using transform tools.
CO5	Compare the various signals and systems
CO6	Test the signals and system using MATLAB based tools

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	2							G	ζ			1	1		
CO2		2				\mathbb{Z}				\langle		1	1	1	1
CO3	1	2			1	1						1	1	2	1
CO4	2	1			1	1	Ň		3M			1	1	2	
CO5	2	1			2	Dues	t for	Exc	elle	nce		2	1		2
CO6	1	2	2	1			J					2	1	2	2
AVG															

G.S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Class: S.Y (Autonomous)

Course: EED 281 Professional Elective-I-Digital Electronics

Course Outcomes

	By the end of the course the student will be able to:
CO1	Examine the different number system and perform the conversion among different number system
CO2	Perform arithmetic operations on signed and unsigned binary numbers
CO3	Minimize the logical expression using Boolean Algebra and k-map method
CO4	Realize combinational circuits for given logical expression
CO5	Design and analyze synchronous and asynchronous sequential circuits using filp-flops
CO6	Examine the characteristics of various logic families

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	1					22			/	\$	No		1		
CO2		2				2	A V	G	2				1		
CO3			1				Z	S					1		
CO4			2		1								1		
CO5		1						X					1		
CO6				1			Ν	ΙΙΤ	TM				1		
AVG	1	1.5	1.5		1	Ques	t for	·Ex	celle	nce			1		

Class: S.Y (Autonomous)

Course: EED 283 Renewable Energy Source

Course Outcomes

	By the end of the course the student will be able to:
C01	Define various sources of energy (Remember)
CO2	Explain the operation of biomass, wind & solar energy with its techniques. (Understand)
CO 3	Recall knowledge about working principle of photovoltaic cell (Remember)
CO4	Identify the economics of RES(Remember)

CO-PO/PSO Mapping

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	1				5					0 #1	2		1		
CO2	2				5							100	2		
CO 3		2				*5			4	\$2			1		
CO4			1		2			2					1	1	
								X	ž						
AVG							Ι								

Quest for Excellence