

Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Part-I

Class: B. Tech (Auto)

Course code & Course Title: EED431 Power System Operation and Control

Course Outcomes

	By the end of the course the student will be able to:
CO1	Explain the fundamental concept of reactive power and illustrate various methods of
	reactive power compensation.
CO2	Analyze the stability of power system using swing equation and equal area criteria.
CO3	Explain excitation System, types and illustrate the control and protective functions of it.
CO4	Discuss the Load frequency control mechanism of single area and two area system.
CO5	Calculate the distribution of load between two power plants and comment on the method
	of load dispatching for economic operation of such plants.
C06	Discuss FACTS technology to improve AC transmission system performance
	36 55 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

СО	PO	PO 2	PO	PO 4	P07	PO	PSO1	PSO2	PSO3
	1		3			12			
CO1	2				2	1			1
CO2	2	2		MIT	["		1	1	
CO3	2		Quest	for Ex	ceilei	ice ₁		1	
CO4	1			1				1	
CO5	2	1		2				1	
C06	2	2					1		
Average	2	1.6							
Mapping	2	2							
Strength									

Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Class: Final Year B.Tech (EE)(Autonomous)

Course: EED433 Electric Hybrid Vehicle

Course Outcomes

	By the end of the course the student will be able to:
C01	Demonstrate the basic concepts of Conventional, Electric, Hybrid EV and state the impact of of conventional vehicles on the society and different types of drive train topologies
CO2	Demonstrate different configurations of electric and hybrid electric drive trains with power flow
CO3	Discuss the propulsion unit for electric and hybrid vehicles
CO4	Demonstrate BLDC drive systems and various communication protocols for EV
CO5	Compare various energy storage and EV charging systems
C06	Demonstrate the breaking system for EV and EHV

СО	P01	P02	P03	P04	P05	P09	PO 12	PSO1	PSO2
CO1	3	3	50	G	440		1	1	1
CO2	3						1		1
CO3	3			TM			1		1
CO4	3	0	N. uest for	Evce	lonco		1		1
CO5	3	(X	ioso jo.				1		1
CO6	3						1		1
Average	3						1	1	1
Mapping Strength	3						1	1	1

Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Class: Final Year B.Tech (EE) (Autonomous)

COURSE NAME-EED434 Switchgear and Protection

Course Outcomes

	By the end of the course the student will be able to:
CO 1	Summarize the need of protection systems and protective zones and basic terminologies pertaining to relays.
CO 2	Explain the relaying principles of numerical relays used for differential relays, directional relays, impedance relays, admittance relays
CO 3	Explain the construction, working and application of Oil circuit breakers, SF6 Circuit breakers and vacuum circuit breakers and HRC fuses.
CO 4	Identify appropriate protection scheme for transmission lines.
CO 5	Select appropriate protection scheme for transformers and alternators
CO 6	Demonstrate the basic principles and applications of current transformers and voltage transformers.

COs	P01	P02	P03	P04	P012	PSO1	PSO2	PSO3
CO1	3				1	1		
CO2		1		MIT	1		1	
CO3	3		Quest f	or Exc	1 ellence	1		
CO4				1	1			1
CO5				1	1			1
CO6	3				1	1		
Mapping	3	1		1	1	1	1	1

Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Class: Final Year (EE)

Course: EED438 Testing & Maintenance

Course Outcome

	By the end of the course the student will be able to:
CO1	Explain different types of testing, methods of testing and maintenance etc
CO2	Understand comprehensive testing techniques of electrical equipment's .
CO3	Explain troubleshooting and maintenance of household appliances
CO4	Gain knowledge of analysis tools and their response
CO5	Classify substation and explain substation layout study, earthing in detail
C06	To perform different testing methods like megger testing, resistance testing, turns ratio test

CO	P01	P02	P03	P05	P06	P011	PO12	PSO1	PSO2
CO1	2							2	2
CO2		2		111				2	2
CO3		2	VI I I					2	2
CO4	2	iesi jo	W EX	ener	ice			2	2
CO5					2			2	2
CO6	2							2	2
Average	2	2			2	·		2	2
Mapping Strength	2.0	2.0			2			2.0	2.0

Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Class: Final Year (EE)

Course: EED 439 Battery Management Systems

Course Outcome

	By the end of the course the student will be able to:
C01	Define the parameters of BMS (Remember)
CO2	Explain the terms used in BMS (Understand)
CO3	Describe the BMS requirement (Apply)
CO4	Use of algorithm for BMS (Apply)

CO	P01	PO2	PO3	PO 5	P06	P07	PO 12	PSO1	PSO2	PSO3
	9 7 7				शिण मंडळ			3		
CO1	2				7777		2	1		
CO2	2			7	16	4	1	1		
CO3	2	2	2		2	1		1		
CO4	2	1		2						1
Average	2	1.5	2	2	1.5	1	1.5	3		1
Mapping Strength	2	1.5	Q2	est ² foi	1.5	ell <mark>e</mark> n	ce 1.5	3		1

Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Class: Final Year (EE)

Course: EED 441 Energy Conservation and Audit

Course Outcome

	By the end of the course the student will be able to:
C01	Define the terms for energy conservation (Remember)
CO2	Describe the Methodology in audit (Understand)
CO3	Explain Energy Efficiency in various Electrical Systems (Understand)
CO4	Illustrate the terms used in Energy Economics (Apply)

СО	PO	PO 2	PO	PO 4	PO	PO 7	PSO1	PSO2	PSO3
	1		3		6	\$ Z			
CO1	2		2	N	2	2	1		
CO2		2		5				1	
CO3	2		2		2	2	1		
CO4	2	2		12	тм		2		
Average	2	2	Que2t	fo2E	cc2]]	en Ze	1.3	1	
Mapping Strength	2	2	2	2	2	2	1.3	1	

Chhatrapati Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Course Name: Photovoltaic System Design (OE V)

Class: Final Year B.Tech-EE (Autonomous) 2024-25

Course Outcomes

	By the end of the course the student will be able to:
CO1	Understand the basics of sources of energy
CO2	Justify the most adequate PV system architecture based on the specific requirements
CO3	Analyse the effect of atmospheric conditions on solar panels.
CO4	Calculate the energy received from Sun at various conditions.
CO5	Understand the basics of Battery and its sizing for PV.
CO6	Develop the MPPT Algorithms for grid interfacing

Course Outcomes													
	Program Outcomes												
	Engin eering Knowl edge	Problem Analysis	Design/ Develop ment of Solution	Conduct Investiga tion of complex problem	Modern Tool usage	The Engineer and Society	Envir onmen t and Sustan ability	Ethics	Indivi dual and team work	Comm un ication	Project Manag ement And inance	Life Long learnin g	
C01	2				MI	_1	1						
CO2	2	2	Q	ulest j	dr Ex	celler	ice					1	
CO3	2	1					1					1	
CO4	2	2										1	
CO5	2												
C06	2		3		1							1	