

G.S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar (An Autonomous Institute) Department of Electrical Engineering

Instructional System Design

Class: T.Y.B.Tech(Autonomous)

Course: EED301 Control System Engineering

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

Structure of a CO statement

- CO1: Able to Determine the mathematical modelling of physical systems and evaluate their transfer function of using block diagram and /or signal-flow graph techniques (Remember)
- CO2: Able to Interpret different physical and mechanical systems in terms of electrical system to construct equivalent electrical models for analysis. system (Understand)
- CO3: Able to Employ the time-domain response of first and second order systems for various standard test signals and investigate their stability using timedomain techniques ions (Apply)
- CO4: Able to Analyze the system response and stability in time domain (Analyse)
- CO5: Able to Formulate different types of analysis in frequency domain to explain the nature of stability of the system (Analyse)
- CO6: Able to **Design** different types of controllers and compensator to ascertain the required dynamic response from the system (Create)

Step 2: Locate COs in Revised Bloom-Vincenti Taxonomy Table For example,

CO1: Define the terminologies used in solid state devices (Remember)

- Action: Define (Remember)
- Knowledge: terminologies used (Factual)
- Condition: of HEV

• Criterion: None

CO	Action	Knowledge	Condition	Criteria
1	Categorize	Remembering(F)	None	None
2	Characterize	Understanding(C)	None	None
3	Interpret Apply (C,F,P)		None	None
4	Employ	Analysing (F,C & P	using simplification	optimize a HEV
		, C&S)	methods	
5	Formulate	Analyse (F,C,P,M,	None	for given
		C&S)		specifications
6	Design	Create (F, C, P, M,	None	for a given
		C&S)		application/problem
				statement

Locating Sample CO in Revised Bloom-Vincenti Taxonomy Table

		Knowledge											
				C	ategories								
Cognitive								Design					
Processes				Meta-	Fundame	Criteria	Practical	instrumental					
	Factua	Conceptu	Procedur	cognitive	ntal	&	Constrain	ities					
	1	al	al		Design	Specificati	ts						
					Principles	ons							
Remember	CO1												
		CO2											
Understand	-												
	CO3	CO3	CO3										
Apply	-												
Analyze	CO4	CO4	CO4	-		CO4							
	CO5	CO5	CO5	CO5		CO5							
Evaluate													
Create	CO6	CO6	CO6	CO6		CO6							

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/ Laboratory/ Field sessions, and present it in the table format indicated with sample course.

Departmental PSO:

PSO 1: Inculcate the ability to utilize applied sciences, transform methods, discrete mathematics, applied differential equations and numerical methods in support of electrical and electronics engineering.

PSO 2: Demonstrate the ability to analyze, design & implement control and instrumentation systems with computer and power systems.

PSO 3: Student should be able to use computational techniques to design and analyze electrical systems.

POs/ KC Class **Course Outcome** CL Tutorial **PSOs** Sessions (Hrs.) CO1 Able to Interpret different physical PO1, F 08 00 R PSO1 and mechanical systems in terms of electrical system to construct equivalent electrical models for analysis. system (Understand Able to **Interpret** different physical PO2.3 U CO2 С 00 06 and mechanical systems in terms of PSO1 electrical system to construct equivalent electrical models for analysis. system (Understand Able to **Employ** the time-domain PO2,3,5 AP F,C, 06 00 CO3 response of first and second order PSO3 Р systems for various standard test signals and investigate their stability using time-domain techniques ions (Apply)

Special Purpose Electrical Machines - Credits: 3:0:0

CO4	Able to Analyze the system response	PO1,2,5	An	F,C,	06	00
	and stability in time domain	PSO3		Ρ,		
	(Analyse)			C&S		
CO5	Able to Formulate different types of	PO2,4	An	P,M	06	00
	analysis in frequency domain to	PSO2,3		FDP,		
	explain the nature of stability of the			C&S		
	system (Analyse)					
CO6	Able to Design different types of	PO1,	С	Р, М,	04	00
	controllers and compensator to ascertain the required dynamic response from the system (Create)	PSO1		C&S		
	Total Hours of instructi	36	00			

Cognitive levels

R-Remember, U-Understand, AP- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practical Constraints, DI- Design Instrumentalities

Step 4: Decide on Strength of CO-PO/PSO Mapping

СО	PO	PO 2	PO	PO 4	РО	PO 10	PSO1	PSO2	PSO3
	1		3		5				
C01	2						2		
CO2		2	2				2		
CO3		2	2		2				2

• Example (Showing only non-zero mapping entries):

CO4	2	2			2			
CO5		2		2			2	2
CO6	1							1
Average	2	2	2	2	2	2	2	2
Mapping Strength	2	2	2	2	2	2	2	2

Step 5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies and Instruction types.

Cos	Assessment Items/Assessm	ent	Delivery	Instruction types
	Instruments		Technologies	
CO1	MSE - I	ESE	Chalk & Board	Teaching Plan
			PPT Presentation	
			Video Lecture	
CO2	MSE-I	ESE	Chalk & Board	Teaching Plan
			PPT Presentation	
			Video Lecture	
CO3	MSE -II	ESE	Chalk & Board	Teaching Plan
			PPT Presentation	
			Video Lecture	
CO4	MSE-II	ESE	Chalk & Board	Teaching Plan
			PPT Presentation	
			Video Lecture	
CO5	MSE-CIE 1,2	ESE	Chalk & Board	Teaching Plan
			PPT Presentation	

			Video Lecture	
CO6	Teacher Assessment	ESE	Chalk & Board	Teaching Plan
			PPT Presentation	
			Video Lecture	

Instructional System Design

Class: T.Y.B.Tech(Autonomous)

Course: EED302 Microprocessor 8085

Course Outcomes:

Step 1: Course Outcomes using Revised Bloom's Taxonomy

CO1: **Explain** the functionality of each architectural block of 8085 microprocessor Action: Explain (Understand) Knowledge: the functionality of each architectural block Condition: of 8085 microprocessor and 8051 microcontroller Criteria:

CO2: **Describe** the assembly language instructions of 8085 microprocessor

Action: Describe (Understand)

Knowledge: instructions

Condition: of 8085 microprocessor

Criteria: assembly language

CO3: Develop assembly language programs for 8085 microprocessor .

Action: Develop (Apply) Knowledge: programs Condition: of 8085 microprocessor and 8051 microcontroller Criteria: assembly language

CO4:Interface semiconductor memory to 8085 microprocessor

Action: Interface (Apply) Knowledge: memory Condition: to 8085 microprocessor Criteria: semiconductor memories

CO5: **Interface** various peripherals to 8085 microprocessor.

Action: Interface (Apply) Knowledge: peripherals Condition: to 8085 microprocessor Criteria: assembly language CO6: **Design** an 8085 microprocessor based system using ADC, DAC, Stepper motor, DC Motor & Relay using assembly language

Action: Design (Apply)

Knowledge: ADC, DAC, Stepper motor, DC Motor & Relay

Condition: 8085 microprocessor based system

Criteria: assembly language

C01	Explain the functionality of each architectural block of 8085 microprocessor
CO2	Describe the assembly language instructions of 8085 microprocessor
CO3	Develop assembly language programs for 8085 microprocessor
C04	Interface semiconductor memory to 8085 microprocessor
C05	Interface various peripherals to 8085 microprocessor
C06	Design an 8085 microprocessor based system using ADC, DAC, Stepper motor, DC
	Motor & Relay using assembly language

Step 2: Location of COs in Revised Bloom-Vincenti Taxonomy Table

				Kno	wledge ca	tegories	
Cognitive Processes	Factual	Conceptua l	Procedur al	Meta- cognitive	Fundame ntal Design Principles	Criteria & Specificatio	Design instrumental ities
Remember		CO1					
Understand		CO2					
Apply			CO3, CO4,CO5, CO6				
Analyze							
Evaluate							
Create							

Step 3: Tagging of course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories(KC),numberofClass/Laboratory/Field sessions, and present it in the table format indicated with sample course

	Course Outcome	POs/ PSOs	CL	КС	Class Sessions
C01	Explain the functionality of each architectural block of 8085 microprocessor	PO1	U	FDP	06
CO2	Describe the assembly language instructions of 8085 microprocessor	PO1	U	FDP	06
CO3	Develop assembly language programs for 8085 microprocessor	PO2	AP	C&S, DI	06
C04	Interface semiconductor memory to 8085 microprocessor	PO3	AP	C&S, DI	06
C05	Interface various peripherals to 8085 microprocessor	PO3	AP	C&S, DI	06
C06	Design an 8085 microprocessor based system using ADC, DAC, Stepper motor, DC Motor & Relay using assembly language	P03	AP	C&S, DI	06
					36

Cognitive levels

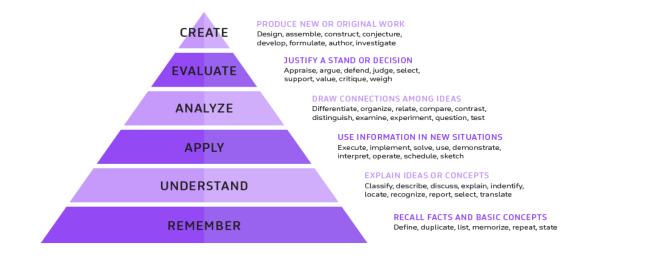
R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering


FDP- Fundamental DesignPrinciples, C&S-Criteria andSpecifications, PS-practical Constraints, DI- Design Instrumentalities

Step 4: Strength of CO-PO/PSO Mapping

	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	3												3		
CO2	3												3		
CO3		3											2	2	
CO4			2											2	2
CO5			2											2	2
CO6			2											2	2
Avg	3	3	2										2.66	2	2

Step 5:Identification of the Assessment Items/Assessment Instruments, Delivery Technologies and Instruction types.

Cos	Assessment Items	/Assessment	Delivery Technologies	Instruction types
	Instruments			
C01	MSE-I	ESD	Chalk & Board, PPT Presentation	Teaching Plan
CO2	TA ESD		Chalk & Board, PPT Presentation	Teaching Plan
CO3	MSE-II	ESD	Chalk & Board, PPT Presentation	Teaching Plan
CO4	MSE-II	ESD	Chalk & Board, PPT Presentation	Teaching Plan
C05	CIE 1	PR Exam	Chalk & Board, PPT Presentation	Teaching Plan
C06	CIE 2 PR Exam		Chalk & Board, PPT Presentation	Teaching Plan

INSTRUCTIONAL SYSTEM DESIGN

Class: T.Y.B.Tech(Autonomous)

Course: EED303 Power Electronics

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

Course outcomes

CO1	Demonstrate the behavior of different switching devices (SCR, MOSFET, IGBT, GTO and TRIAC.) for
	construction, working, VI characteristics and switching characteristics. (Understand)
	construction, working, vrenaracteristics and switching characteristics. (Onderstand)
CO2	Demonstrate the operation of single phase controlled and uncontrolled rectifiers and analyze its
	characteristics and performance parameters with R and RL load (Analyze)
CO3	Demonstrate the operation of Three phase controlled and uncontrolled rectifiers and analyze its
	characteristics and performance parameters with R and RL load (Analyze)
CO4	Describe basic operation of chopper with control methods (Understand)
CO5	Demonstrate the operation of single phase inverter with different types and three phase inverter with
	different operating mode (Analyze)
CO6	Illustrate the functioning of AC voltage controllers and cycloconverters(Analyze)

step 2: Locate COs in Revised Bloom-Vincenti Taxonomy Table

		Knowledge Categories										
Cognitive Processes	Factual	Conceptual	Procedural	Meta- cognitive	Fundamental Design Principles	Criteria & Specifications	Practical Constraints	Design instrumentalities				
Remember	CO1											
Understand												
Apply	CO4		CO2									
Analyze	CO6	CO5	CO3									
Evaluate												
Create												

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/ Laboratory/ Field sessions, and present it in the table format indicated with sample course

	Course Outcome	POs/ PSOs	CL	KC	Class	Practical
					Sessions	session
CO1	Demonstrate the behavior of	PO1, PO2,PO9,PO12,PSO1	R	F	7	2
	different switching devices (SCR,	102,109,1012,1501				
	MOSFET, IGBT, GTO and TRIAC.)					
	for construction, working, VI					
	characteristics and switching					
	characteristics. (Understand)					
CO2	Demonstrate the operation of	PO1,	AP	PR	8	2
	single phase controlled and	PO2,PO3,PO4,PO12,PSO2				
	uncontrolled rectifiers and					
	analyze its characteristics and					
	performance parameters with R					
	and RL load (Analyze)					
CO3	Demonstrate the operation of	PO1,	AZ	PR	6	1
	Three phase controlled and	PO2,PO3,PO4,PO12,PSO2				
	uncontrolled rectifiers and					
	analyze its characteristics and					
	performance parameters with R					
	and RL load (Analyze)					
CO4	Describe basic operation of	PO2,PO3,PO12,PSO2	AP	F	5	2
	chopper with control methods					
	(Understand)					
CO5	Demonstrate the operation of	PO2,PO4,PO5PO12,PSO2	AZ	С	7	1
	single phase inverter with					
	different types and three phase					
	inverter with different operating					
	mode (Analyze)					
CO6	Illustrate the functioning of AC	PO1,PO12,PSO2	AZ	F	5	1
	voltage controllers and					
	cycloconverters(Analyze)					
		L	1	I	36	9
Total]	Hours of instruction					

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practical Constraints, DI-Design Instrumentalities

Step 4: Decide on Strength of CO-PO/PSO Mapping

• Example (Showing only non-zero mapping entries):

CO\PO	PO1	PO2	PO3	PO4	PO9	PO12	PSO1	PSO2
Power Electronics								
CO1:Demonstrate the behavior of different switching devices (SCR, MOSFET, IGBT, GTO and TRIAC.) for construction, working, VI characteristics and switching characteristics. (Understand)	3	2			1	1	1	
CO2:Demonstrate the operation of single phase controlled and uncontrolled rectifiers and analyze its characteristics and performance parameters with R and RL load (Analyze)	1	3	3	2		1		1
CO3:Demonstrate the operation of Three phase controlled and uncontrolled rectifiers and analyze its characteristics and performance parameters with R and RL load (Analyze)	1	3	3	2		1		1
CO4:Describe basic operation of chopper with control methods (Understand)		3	2			1		1
CO5:Demonstrate the operation of single phase inverter with different types and three phase inverter with different operating mode (Analyze)		3		2	1	1		1
CO6:Illustrate the functioning of AC voltage controllers and cycloconverters(Analyze)	3					1		1

Average	2	2.4	2.6	2	1	1	1	1	l

Course Coordinator: R.P.Dahad

INSTRUCTIONAL SYSTEMS DESIGN

Name of the Course: EED304 Power Systems-I

Class: TY

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

1. Describe layout and operation of thermal and hydro power plant.

2. Calculate the transmission line constants of solid & composite conductors using the concept of GMD

3. Classify types of conductors and insulators also compare them based on the design specification & illustrate the effects caused by voltage & current

4. Calculate the sending end and receiving end parameters of different (short, medium & long) types of transmission lines.

5. Discuss the classification, requirements, design considerations, and calculation methods for AC and DC distribution systems.

CO1: Describe layout and operation of thermal and hydroelectric power plant & Evaluate plant economics.

- Action: Describe, Evaluate
- Knowledge: layout and operation of thermal and hydroelectric power plant
- Condition: NA
- Criteria: NA

CO2: Calculate the transmission line constants of solid & composite conductors using the

concept of GMD.

- Action: Calculate
- Knowledge: the transmission line constants of solid & composite conductors
- Condition: using the concept of GMD.
- Criteria: NA

CO3: Classify types of conductors and insulators also compare them based on the design specification & illustrate the effects caused by voltage & current.

- Action: Classify, Illustrate
- Knowledge: types of conductors and insulators, the effects caused by voltage & current
- Condition: based on the design specification

• Criteria: N/A

CO4: Calculate the sending end and receiving end parameters of different (short, medium & long) types of transmission lines.

- Action: Calculate
- Knowledge: the sending end and receiving end parameters of different types of transmission lines
- Condition: N/A
- Criteria: N/A

CO5: Discuss the classification, requirements, design considerations and calculation methods for AC and DC distribution systems

- Action: Discuss
- Knowledge: the classification, requirements, design considerations and calculation methods for AC and DC distribution systems
- Condition: N/A
- Criteria: N/A

				Knowledge Categories						
								Design		
Cognitive				Meta-	Fundamen		Practical	instrumentali ties		
Processes	Factual	Conceptua	Procedur	cognitive	_	Specificatio	Constraint			
		I	al		Principles	ns	S			
Remember	CO5	CO5								
Understand	CO1	CO1								
		CO2								
	CO3	CO3								

Step 2: Locate COs in Revised Bloom-Vincenti Taxonomy Table

Apply	CO4	CO4			
Analyze					
Evaluate					
Create					

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/ Laboratory/ Field sessions, and present it in the table format indicated with sample course

	Course Outcome	POs/	CL	КС	Class	Tutoria
		PSOs			Sessions	l (Hrs.)
CO1	Describe layout and operation of	PO1, PO2	U	F, C	08	03
	thermal and hydroelectric power	PSO1				
	plant & Evaluate plant economics.					
CO2	Calculate the transmission line	PO1, PO2	U	С	08	02
	constants of solid & composite	PSO1				
	conductors using the concept of					
	GMD					
CO3	Classify types of conductors and	PO1, PO2,	U	F, C	08	03
	insulators also compare them based	PSO1				
	on the design specification &					
	illustrate the effects caused by					
	voltage & current					
CO4	Calculate the sending end and	PO1,	Ар	F,C	06	02
	receiving end parameters of	PSO2				
	different (short, medium & long)					
	types of transmission lines.					
CO5	Discuss the classification,	PO1,	R	F,C	06	02
	requirements, design considerations,	PSO1				

and calculation methods for AC and				
DC distribution systems				
Total Hours of instruction	36	12		

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practi=cal

Constraints, DI- Design Instrumentalities

Step 4: Decide on Strength of CO-PO/PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2
CO1	3	2				2	
CO2	3	2				2	
CO3	3	2				2	
CO4	3						1
CO5	3					2	
Average	3	2				2	1
Mapping Strength							

Step 5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies and Instruction types.

Cos	Assessment Items/Assessm	nent	Delivery	Instruction types
	Instruments		Technologies	
CO1	CT-1, MCQ Test-1and	ESE Chalk & Board		Teaching Plan
	Assignment-1		PPT Presentation	
			Video Lecture	
CO2	CT-1, MCQ Test-1 and	ESE	Chalk & Board	Teaching Plan
	Assignment-1		PPT Presentation	
			Video Lecture	
CO3	CT-2, MCQ Test-2 and Assignment-2	ESE	Chalk & Board	Teaching Plan
			PPT Presentation	
			Video Lecture	
CO4	CT-2, MCQ Test-2 and	ESE	Chalk & Board	Teaching Plan
	Assignment-2		PPT Presentation	
			Video Lecture	
CO5	MCQ Test-3	ESE	Chalk & Board	Teaching Plan
			PPT Presentation	
			Video Lecture	

S.A.Sabnis Course Coordinator Dr.S.M.Badave HEED