Maharashtra Institute of Technology

(An Autonomous Institute)
Affiliated to Dr. Babasaheb Ambedkar Marathwada University (Dr. BAMU), Aurangabad AICTE Approved, (Accredited with "Grade A" by NAAC)

Department of Emerging Science & Technology

Course Code: AID225 Course: Lab-V Data Analytics Lab Class: SY (AIDS)

Autonomous

Course Outcome: - Students are able to

CO1: Explain the R programming basics syntax (I. Understand)

CO2: Describe descriptive statistics in R. (II. Understand)

CO3: Write R script to read different types of data set . (III. Apply)

CO4: Demonstrate the data distribution using various plots (III. Apply)

CO5: Analyze datasets for regression, classification and clustering (IV.

Analyze)

CO6: Build the model for their selected dataset. (VI. Create)

CO-PO and CO-PSO mapping

СО	PO1	PO2	PO3	PO4	PO5	PO8	PO9	PO10	PSO1	PSO2
CO1	2	-	-	į -	-	-	-	-	2	-
CO2	2	-	-	-	1,	(-	-	-	2	1-
CO3	2	2	-	-	-	*-	-		%-	-
CO4	-	2	-	-	-	12	-	-77	-	2
O 5	1	1	1	1	-	-	-	-	-	2
CO6	1	1	1	1	1.	1	1	1.	2	2
Average	1.6	1.5	1	1	1	1	1	1	2	2
Mapping Strength	1.6	1.0	1	1	1	1	1	1	2	2

Course teacher Ms. Kanchan Bhale

AID251: Database Management System

Class: S.Y. (AIDS)

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

- CO1: Explain basic concept of database management system and its architecture. (I. Knowledge)
- CO2: Analyze and design Database Management System using ER model (I. Knowledge)
- CO3: Normalize the database design using normal forms (III. Apply)
- CO4: Implement different types of SQL queries on data (III. Apply)
- CO5: Illustrate ACID properties for transaction management and concurrency control (I. Knowledge)
- CO6: Compare NoSQL databases with SQL databases (I. Knowledge)

Step 2: Locate COs in Revised Bloom-Vincenti Taxonomy Table

		Knowledge Categories										
Cognitive Processes	Factual	Concept ual	Procedural		Fundamental Design Principles	Criteria & Specifications	rractical	Design instrumentatalities				
Remember	CO1	CO5										
Understand	CO3,CO4	CO2, CO3, CO6										
Apply	CO4											
Analyze												
Evaluate												
Create												

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/Laboratory/Field sessions

	Course Outcome	POs/ PSOs	CL	KC	Class Sessions	Tutorial (Hrs)
CO1	Explain basic concept of database management system and its architecture.	PO1, PSO1	U	F,C	07	00

Total	Hours of instruction				36	00
CO6	Compare NoSQL databases with SQL databases	PO1, PSO1	Ар	C	07	00
CO5	Illustrate ACID properties for transaction management and concurrency control	PO1, PSO1	Ар	С	07	00
CO4	Implement different types of SQL queries on data	PO1, PO2, PSO1	U	F,C	07	00
CO3	Normalize the database design using normal forms	PO1, PSO1	Ü	F,C	07	00
CO2	Analyze and design Database Management System using ER model	PO1, PO2, PSO1	U	С	08	00

Step 4:Decide on Strength of CO-PO/PSO Mapping Example (Showing only non-zero mapping entries):

со	PO1	PO2	PO3	PO4	PSO1	PSO2
CO1	2	-	-		2	
CO2	2	2	-	i ₂ -	2	
CO3	2	-	2	1-	2	
CO4	2	1	-	%-	2	
CO5	1	-	-	j-	1	
CO6	1	2	-	-	1	
Average	1.6	1.6	-	-	1.66	
Mapping Strength	1.6	1.6	-	-	1.66	

5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies, and Instruction types.

COs	Assessment Items/Assessr Instruments	nent	Delivery Technologies	Instruction types
CO1	MSE-1/CIE-Survey	ESE	Chalk & Board	Teaching Plan
CO2	MSE-1/CIE Case Study/Quiz	ESE	Chalk & Board PPT Presentation	Teaching Plan
CO3	MSE-2 / TA-OBT	ESE	Chalk & Board PPT Presentation	Teaching Plan
CO4	MSE-2/TA-OBT/CIE- Project based Learning	ESE	Chalk & Board PPT Presentation	Teaching Plan
CO5	TA- Prepare Questionnaire	ESE	Chalk & Board PPT Presentation	Teaching Plan
C06	TA- Prepare Questionnaire	ESE	Chalk & Board PPT Presentation	Teaching Plan

Ms. K. M. Bhale

CREATE Design, assemble, construct, conjecture, develop, formulate, author, investigate JUSTIFY A STAND OR DECISION Appraise, argue, defend, judge, select, **EVALUATE** support, value, critique, weigh ANALYZE Differentiate, organize, relate, compare, contrast, distinguish, examine, experiment, question, test USE INFORMATION IN NEW SITUATIONS APPLY Execute, implement, solve, use, demonstrate, interpret, operate, schedule, sketch EXPEAIN IDEAS OR CONCEPT UNDERSTAND Classify, describe, discuss, explain, indentify, locate, recognize, report, select, translate RECALL FACTS AND BASIC CONCEPTS REMEMBER Define, duplicate, list, memorize, repeat, state

AID252: Data Communication Network

Class: SY

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

COI	Identify Data communication network component and Topology. (I. Remember, II. Understand)
CO2	Classify Communication signals and Transmission media. (II Understand)
CO3	Illustrate application of ISO OSI Layered Architecture of Network
704	Discover Application Layer Protocols. (II Understand, III. Apply)
05	Operate network components and learn configuration (III. Apply)
·06	Compute network routing algorithms with packet tracing (III. Apply)

Step 2:Locate COs in Revised Bloom-Vincenti Taxonomy Table

Locating Sample CO in Revised Bloom-Vincenti Taxonomy Table

	Knowledge Categories										
Cognitive Processes	Factual	Conceptual	Procedural		Fundamen tal Design Principles	Specification	- 3	Design instrumentaliti es			
Remember	CO1										
Understand		CO2, CO3									
Apply			CO4, CO5, CO6								
Analyze											
Evaluate							77.				
Create		÷.									

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/Laboratory/Fields sssions, and present it in the table format indicated with sample course Machine Drawing - Credits: 3:1:0

COI	Course Outcome	POs/ PSOs	CL	KC	Class Sessions	Tutorial (Hrs)
	Identify Data communication network component and Topology. (I. Remember, II. Understand)	PO1	U	C,F	06	.00
CO2	Classify Communication signals and Transmission media. (II Understand)	PO1	U	С	06	0.0
CO3	Illustrate application of ISO OSI Layered Architecture of Network	PO1	U	C	06	0.0
CO4	Discover Application Layer Protocols. (II Understand, III. Apply)	PO1	Ap	P	06	0,0
CO5	Operate network components and learn	· PO2	Ap	P,F	06	

	configuration (III. Apply)					
CO6	Compute network routing algorithms with packet tracing (III. Apply)	PO2	Ap	P	06	
Total	Hours of instruction					
	Complete Land				36	00

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental DesignPrinciples, C&S-Criteria and Specifications, PS- Practical Constraints, DI-

Design Instrumentalities

FDP- Fundamental DesignPrinciples, C&S-Criteria and Specifications, PS- Practical Constraints, DI-Design Instrumentalities

Step 4:Decide on Strength of CO-PO/PSO Mapping

Example (Showing only non-zero mapping entries):

со	PO1	PO2	PO3	PO4	PI	PSO1	PSO2
CO1	3		<u> </u>			1	
CO2	2		-	-		1	
CO3	2		-	-		1	
CO4	-	2				1 .	
CO5	-	2	-			i 1	
CO6	-	2	-			. 1	
Average	. 1.0	1.0	1.0	-		1	
Mapping Strength	1.0	1.0	1.0	-		1	

Step 5:Identify the Assessment Items/Assessment Instruments, Delivery Technologies, and Instruction types.

Cos	Assessment Items/Assessment Instruments	t	Delivery Technologies	Instruction types	
CO1	MSE-1/ Teacher Assessment ESE		Chalk & Board	Teaching Plan	
CO2	MSE-1/ Teacher Assessment	ESE	Chalk & Board PPT Presentation	Teaching Plan	
соз	MSE-2/Teacher Assessment	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan	
CO4	Teacher Assessment	ESE	Chalk & Board	Teaching Plan	
CO5	Teacher Assessment	ESE	Chalk & Board	Teaching Plan	

CO6 Teacher Assessment ESE Chalk & Board PPT Presentation

Risean chaudhany

AID251: Discrete Mathematics and Graph Theory

Class: SY

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

- CO1: Use the concept of propositional logic to solve the engineering problems. (BL: Remember, Understand, Apply)
- CO2: Solve the problems on set operations, counting theory and functions (BL: Remember, Understand, Apply)
- CO3: Identify equivalence and partial order relations. (BL: Understand, Apply)
- CO4: Apply concepts of graph and trees for solving complex problems. (BL: Apply)
- CO5: Make use of algebraic properties of groups, rings and fields to solve number theoretic problems (BL: Apply)

Step 2: Locate COs in Revised Bloom-Vincenti Taxonomy Table Locating Sample CO in Revised Bloom-Vincenti Taxonomy Table

	Knowledge Categories										
Cognitive Processes	Factual	Conceptual	Procedural	70.0	Fundament al Design Principles	Criteria & Specification	Practical Constraints	Design instrumentalit es			
Remember	COI	CO2									
Understand		CO1, CO2	CO3								
Apply	COI	CO4, CO5	CO2, CO4, CO5	CO3							
Analyze											
Evaluate											
Create											

Step 3: Tag course outcomes with Program Outcomes (POs.) Program Specific Outcomes (PSOs.) Cognitive Level (CL), Knowledge Categories (KC), number of Class/Laboratory/Field sessions, and present it in the table format indicated with course Discrete Mathematics and Graph Theory - Credits: 3:1:0

	Course Outcome	POs/ PSOs	CL	KC	Class Sessions	Tutorial (Hrs)
CO1	Use the concept of propositional logic to solve the engineering problems. (BL: Remember, Understand, Apply)	PO1	R, U,	F, C,	06	03
CO2	Solve the problems on set operations, counting theory and functions (BL: Remember, Understand, Apply)	PO1, PO2,PO3	R, U,	C,P	08	03
CO3	Identify equivalence and partial order relations. (BL: Understand, Apply)	PO1, PO2	Ap	P, M	08	02

CO4	Apply concepts of graph and trees for solving complex problems. (BL: Apply)	PO1,PO2, PO3	AP	С, Р	06	02
CO5	Make use of algebraic properties of groups, rings and fields to solve number theoretic problems (BL: Apply)	PO1,PO2	Аp	C, P	08	02
Tota	l Hours of instruction				36	12

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

· Categories specific to Engineering

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practical Constraints, DI- Design

· Instrumentalities

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practical Constraints, DI- Design Instrumentalities

Step 4: Decide on Strength of CO-PO/PSO Mapping

Example (Showing only non-zero mapping entries):

со	PO1	PO2	PO3	PSO1	PSO2
CO1	3			2	
CO2	3	2	2	2	
CO3	3	2		2	
CO4	2	2	3	2	
CO5	3	2		1	

Step 5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies, and Instruction types.

Cos	Assessment Items/Assessn Instruments	nent	Delivery Technologies	Instruction types	
COI	CT-1/MSE/ Teacher Assessment	ESE	Chalk & Board	Teaching Plan	
CO2	CT-1/ MSE/ Teacher Assessment	ESE	Chalk & Board PPT Presentation	Teaching Plan	
CO3	CT-2MSE / Teacher Assessment	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan	
CO4	CT-2MSE / Teacher Assessment	ESE	Chalk & Board PPT Presentation	Teaching Plan	
CO5	CT-2MSE / Teacher Assessment	ESE	Chalk & Board PPT Presentation	Teaching Plan	

Joinn la.
Dr. S.A. Kinariwala

Maharashtra Institute of Technology (An Autonomous Institute)

Affiliated to Dr. Babasaheb Ambedkar Marathwada University (Dr. BAMU), Aurangabad AICTE Approved, (Accredited with "Grade A" by NAAC)

Department of Emerging Science & Technology

Course Code: AID201

Course: Data Structure & Algorithm

Class: SY (AIDS)

Autonomous

Course Outcome: - Students are able to

CO1: Describe the concepts of Data types and memory allocation. Discuss Asymptotic notations. (II. Understand)

CO2: Implement linear data structures like stack, queue. (III. Apply)

CO3: Implement operations on linked list and stack using linked list. (III. Apply)

CO4: Perform operations on tree and graph like insertion, deletion and traversal.(III. Apply)

CO5: Implement different sorting and searching algorithms. (III. Apply)

CO6: Apply algorithms for problem solving like sorting and find minimum spanning tree. (III. Apply)

CO-PO and CO-PSO mapping

CO	PO1	PO2	PO3	PO4	PO12	PSO1	PSO2
CO1	3	8-	-	-	-	1	-
CO2	-	3	-	y -). -	1	-
CO3	-	-	3	1,_		1	-
CO4	-	-	3	-	-	1	
CO5	-	-	3	-	-	1	-
CO6	,-	-	3	-	-	1	-
Average	1.0	1.0	2.0	-	-	1	13-
Mapping Strength	1.0	1.0	2.0	-	-	1	-

Course teacher Mr. Bharat Chaudhary

AID283: Human Computer Interaction

Class: SY AIDS

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

CO1 Explain the importance of HCl study and principles of user-centered design (UCD) approach. (Understand)II

CO2: Identify design principles, models, and assessment strategies in user interface design.

CO3: Describe the guidelines for user interface((Understand)II

CO4: Discover the recent trends in HCI((Apply)III

CO5: Illustrate effective user-interfaces((Apply) III

CO6: Apply cognitive models for predicting human-computer-interactions. ((Apply)II

Step 2: Locate COs in Revised Bloom-Vincenti Taxonomy Table Locating Sample CO in Revised Plane Viscoust To

				Knowle	dge Catego	ries		Design	
Cognitive Processes	Factual	Conceptual	Procedural		Fundament al Design Principles	Criteria & Specification	110000	instrumentaliti	
Remember									
Understand	COI	CO2, CO3	CO2,						
Apply		CO4, CO5,CO6	ii ii						
Analyze									
Evaluate									
Create									

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/Laboratory/Field sessions, and present it in the table format indicated with sample course Machine Drawing - Credits: 3:1:0

	Course Outcome	POs/ PSOs	CL	KC	Class Sessions	Tutori (Hrs)
CO1	Explain the importance of HCl study and principles of user-centered design (UCD) approach. (Understand)II	POI	U	F		
CO2	Identify design principles, models, and assessment strategies in user interface design. (11)	PO2	U	C,P	06	
CO3	Describe the guidelines for user interface((Understand)ll	PO2	U	С	06	
CO4	Discover the recent trends in HCI((Apply)II	PO2	Ap	С	06	
COS	Illustrate effective user-interfaces((Apply) III	PO2	Ap	C,P	06	
CO	6 Apply cognitive models for predicting human-computer-interactions. ((Apply)II	PO2	Ap	С	06	0

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental DesignPrinciples, C&S-Criteria and Specifications, PS- PracticalConstraints, DI-

DesignInstrumentalities

FDP- Fundamental DesignPrinciples, C&S-Criteria and Specifications, PS- PracticalConstraints, DI-

DesignInstrumentalities

Step 4:Decide on Strength of CO-PO/PSO Mapping

Example (Showing only non-zero mapping entries):

со	PO1	PO2	PO5	PO6	PI	PSO1	PSO2	PSO3
CO1	2	-	-			1		
CO2	-	2	-			1		
CO3	-	1	-7	ii-		1		
CO4		2		-		1		
CO5		2				1		
CO6		2				1		

Average Mapping	2.0	1.8	- ,			
Strength	2.0	2.0		-	1.0	

Step 5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies, and Instruction types.

Cos	Assessment Items/Assessments	ment Delivery		and Instruction types. Instruction types
COI	MSE/ Assignment1	ESE	Technologies Chalk & Board/ PPT Presentation	Teaching Plan
CO2	MSE/ Assignment2/quiz	ESE	Chalk & Board PPT Presentation	Teaching Plan
CO3	MSE/ Assignment3	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO4	MSE/ Assignment4	ESE	Chalk & Board PPT Presentation	Teaching Plan
CO5	Presentation/	ESE	Chalk & Board	Teaching Plan
CO6	Case Study	ESE	Chalk & Board	Teaching Plan

CREATE

Design, assemble, constituet, surjecture, develop, formulate, author, investigate

JUSTIFY A STAND OR DECISION
Appraise, argue, defend, judge, select, support, value, citique, weigh

ANALYZE

Differentiate, organice, relate, compare, contrast, distinguish, examine, experiment, question, text

USE INFORMATION IN NEW SITUATIONS
Execute, impligment, solve, use, derivonstrate, interpret, operate, schedule, sketch

LAPLAIN INLASTIC, report, select, translate

RECALL FACTS AND BASIC CONCEPTS
Define, duplicate, list, memorize, report, state.

Dipa D Dharmadhikari Assistant Professor ESTD

EST901: Introduction to Artificial Intelligence & Machine Learning (H/M)

EST971: Lab: Introduction to Artificial Intelligence & Machine Learning

Class: SY

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

- CO1: Define AI and its techniques. (I Remember)
- CO2: Explain Logic programming and Knowledge representation. (II. Understand)
- CO3: Differentiate between various supervised and unsupervised learning techniques. (II. Understand)
- CO4: Apply mathematical fundamental concepts. (III. Apply)
- CO5: Apply Regression algorithms. (III. Apply)
- CO6: Apply the supervised and unsupervised learning algorithms. (III. Apply)

Step 2: Locate COs in Revised Bloom-Vincenti Taxonomy Table Locating Sample CO in Revised Bloom-Vincenti Taxonomy Table

		Knowledge Categories										
Cognitive Processes	Factual	Conceptual	Procedural	Metacogniti ve	Fundament al Design Principles	Criteria & Specifications	Practical Constraints	Design instrumentalities				
Remember	CO1	CO2										
Understand	CO2	CO3										
Apply		CO4,CO5,	CO5, CO6									
Analyze												
Evaluate												
Create												

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories(KC),number of Class/Laboratory/Field sessions, and present it in the tableformat indicated with sample course

COL	Course Outcome	POs/ PSOs	CL	KC	Class Sessions	Tutorial (Hrs)
COI	Define AI and its techniques.	PO1,PO2	R	F	08	00
CO2	Explain Logic programming and Knowledge representation.	PO2	U	F,C	08	00
CO3	Differentiate between various supervised and unsupervised learning techniques	PO2	U	C	08	00
CO4	Apply mathematical fundamental concepts	PO1	Ap	С	08	00
CO5	Apply Regression algorithms.	PO2	Ap	C,P	08	00

CO6	Apply the supervised and unsupervised learning algorithms.	PO2	Ap	C,P	08
	Hours of instruction				48

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practical Constraints, DI- Design

FDP- Fundamental Design Principles, C&S-Criteria and specifications, PS- Practical Constraints, DI- Design

Step 4: Decide on Strength of CO-PO/PSO Mapping

Example (Showing only non-zero mapping entries):

CO	PO1	PO2	PO3	PO4	PO5	-		
COI	1	1		104	PO5	PI	PSO1	PSO2
CO2	-	1	-	-	-	-	1	
004	-	1	-	_			· ·	
CO3	·-	2			-	-	1	-
CO4	2	<u> </u>		-	-	-	1	_
CO5		-	-	-	2	_	,	
		1	٠.				1	-
CO6				-	-	-	1	1
Average	-	2	1	-	-		,	<u> </u>
Average	1.5	1.4	1.0				1	1
Mapping		1.500.5	1.0	-7.	-	-	1.0	1.0
Strength	1.0	1.0	1.0					-10
			.,,	"	-	-	1.0	1.0

Step 5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies, and Instruction types.

Cos	Assessment Items/A Instruments	Assessment Instruments, Delivery Technologies, and Delivery Technologies				
COI			2 molegies	Instruction types		
	Quiz,MSE	ESE	Chalk & Board PPT Presentation	Teaching Plan		
CO2	Practical(1),MSE	ESE,	Video Lecture			
		PR Exam	Chalk & Board PPT Presentation	Teaching		
		Dadiii	Video Lecture	Plan, Practical		
	MSE	-	Demonstration	Teaching Plan		
		ESE	Chalk & Board	Teaching Plan		
			PPT Presentation			
CO4	Assignment, MSE	ESE	Video Lecture			
	,	ESE	Chalk & Board	Teaching Plan		
		PPT Presentation Video Lecture				

CO5	Practical(2,3,4)	ESE, PR Exam	Practical Session Demonstration	Practical Teaching Plan
CO6	Assignment Practical(7,8)	ESE, PR Exam	Demonstration	Practical Teaching Plan

Humal

Ms. Mrunal Mule

Asst. Professor ESTD

Maharashtra Institute of Technology

(An Autonomous Institute)
Affiliated to Dr. Babasaheb Ambedkar Marathwada University (Dr. BAMU), Aurangabad
AICTE Approved, (Accredited with "Grade A" by NAAC)

Department of Emerging Science & Technology

Course Code: AID202

Course: Introduction to AI

Class: SY (AIDS) Autonomous

Course Outcome: - Students are able to

CO1: Describe the concept of Artificial Intelligence and Intelligent Agents. (II Knowledge)

CO2: Explain the Applications of Artificial Intelligence and its Impact on society (II Understand)

CO3: Discuss the Optimal Path finding methods. (II Understand)

CO4: Apply Game-playing method for solving problems (III Apply)

CO5: Apply Constraint Satisfaction method for solving problems (III Apply)

CO6: Apply state space and Heuristic Search methods for solving problems. (III Apply)

CO-PO and CO-PSO mapping

СО	PO1	PO2	PO5	PO6	PO12	PSO1	PSO2
CO1	1	-	-	-	1	2,	-
CO2	· •	2	-	-	1	2	-
CO3	-	2	,-	-	1	2	-
CO4	-	2	-	-	1	2	ş - -
CO5	•	2	-	-	1	2): -
CO6	4	2	-	-	1	2	-
Average	1.0	2	-	-	1	2	-
Mapping Strength	1.0	2	-	-	1	2	-

Course teacher Ms. Dåepa Dharmadhikari

Maharashtra Institute of Technology (An Autonomous Institute)

Affiliated to Dr. Babasaheb Ambedkar Maraffiwada University (Dr. BAMU), Aurangabad AlCTE Approved, (Accredited with "Grade A" by NAAC)

Department of Emerging Science & Technology

Course Code: AID204 Course: Microprocessors & Microcontrollers Class: SY (AIDS)

Autonomous

Course Outcome: - Students are able to

CO1: Describe basic Logic gates and perform conversions among different number system. (II Knowledge)

CO2: Apply K map to simplify logical expressions and understand combinational circuit and sequential circuits. (III Application)

CO3:Illustrate basics of microprocessor and instruction set of 8086. (III Application)

CO4: Analyze difference between microprocessor 8086 and microcontroller 8051. (IV Analysis)

CO5: Examine logic gates and flipflops. (IV Analysis)

CO6: Analyze assembly language program for 8086.(IV Analysis)

CO-PO and CO-PSO mapping

CO	PO1	PO2	PO5	PO6	PO12	PSO1	PSO2
CO1	1	-		-12	1	1	
CO2	1	2	-	-:	1	1	
CO3	1	2	-,	-,,	1	1	-
CO4	1	2	-,	- 1	1	1	-
CO5	1::	2		-	1	1	-
CO6	1	2	1	-	1	1	-
Average	1.0	2	1	-	1	1	y-=-
Mapping Strength	1.0	2	1	-	1	1	-

Course teacher Mr. Kiran Chaudhari

Maharashtra Institute of Technology

(An Autonomous Institute)

Affiliated to Dr. Babasalieb Ambedkar Marathwada University (Dr. BAMU), Aurangabad
AICTE Approved, (Accredited with "Grade A" by NAAC)

Department of Emerging Science & Technology

Course Code: AID203 Course: Object Oriented Programming Class: SY (AIDS)

Autonomous

Course Outcome: - Students are able to

CO1: Explain the need & features of object oriented programming (II Understand)

CO2: Apply the syntax and semantics of java programming language.(III Apply)

CO3: Use classes, objects, members of a class, and relationships among them to solve a specific problem.(III Apply)

CO4: Write reusable programs using the concepts of inheritance, polymorphism, interfaces and packages. (III Apply)

CO5: Apply the concepts of Multi-threading, File I/O, and Exception handling. (III Apply)

CO6: Write event driven GUI programs in Java. (III Apply)

CO-PO and CO-PSO mapping

CO	PO1	PO2	PO5	PO6	PO12	PSO1	PSO2
COI	1	-	-	-	-	1	-
CO2	1	-		-	-,:	1	-
CO3	1	1	-		-0	1	-
CO4	1	1	-	-00	-	1	-
CO5	1	1	1			1	-
CO6	1	1	2		-	1	-
Average	1.0	1.0	1.5		-	1.0	-
Mapping Strength	1.0	1.0	1.0	-	-	1.0	-

Muncy Course to se

Course teacher Ms. Mrunal Mule