

MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar

(An Autonomous Institute) Department of Electrical Engineering

ate: 07/07/2024

INSTRUCTIONAL SYSTEM DESIGN

Class: B. Tech (Auto)

Course code & Course Title: EED431 Power System Operation and Control

Course Outcomes:

- CO1: Explain the fundamental concept of reactive power and illustrate various methods of reactive power compensation.
- CO2: Analyze the stability of power system using swing equation and equal area criteria.
- CO3: Explain excitation System, types and illustrate the control and protective functions of it.
- CO4: Discuss the Load frequency control mechanism of single area and two area system.
- CO5: Calculate the distribution of load between two power plants and comment on the method of load dispatching for economic operation of such plants.
- CO6: Discuss FACTS technology to improve AC transmission system performance

Locate COs in Revised Bloom-Vincenti Taxonomy Table

CO1: Explain the fundamental concept of reactive power and illustrate various methods of reactive power compensation. (Remember)

- Action: Explain, Illustrate
- Knowledge: Fundamental Concept, Reactive Power, Methods, Reactive Power Compensation
- Condition: None
- Criterion: None

CO2: Analyze the stability of power system using swing equation and equal area criteria.

- Action: Analyze
- Knowledge: Stability, Power System, Swing Equation, Equal Area Criteria
- Condition: None
- Criterion: None

CO3: Explain excitation System, types and illustrate the control and protective functions of

it.

- Action: Explain, Illustrate •
- Knowledge: Excitation System, Types, Control Functions, Protective Functions
- **Condition:** None
- Criterion: None

CO4: Discuss the Load frequency control mechanism of single area and two area system.

- Action: Discuss
- Knowledge: Load Frequency Control, Single Area System, Two Area System
- Condition: None
- Criterion: None

CO5: Calculate the distribution of load between two power plants and comment on the method of load dispatching for economic operation of such plants.

- Action: Calculate, Comment
- Knowledge: Load Distribution, Power Plants, Load Dispatching, Economic Operation •
- **Condition:** None •
- Criterion: None

CO6: Discuss FACTS technology to improve AC transmission system performance

- Action: Discuss
- Knowledge: FACTS Technology, AC Transmission System, Performance Improvement
- Condition: None (not explicitly mentioned)
- Criterion: None (not explicitly mentioned)

G.S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar

(An Autonomous Institute)

Department of Electrical Engineering

CO	Action	Knowledge	Condition	Criteria
1	Explain	Remembering(F)	None	None
2	Analyze	Analyze(C)	None	None
3	Explain	Comprehension (C, F)	None	None
4	Discuss	Comprehension (F, C & P)	None	None
5	Calculate	Analyze (F, C & P)	None	None
6	Discuss	Comprehension (F, C & P)	None	None

Locating Sample CO in Revised Bloom-Vincenti Taxonomy Table

			2	RAMSTKI	nowledge	\mathbf{i}		
				Ca	tegories			
Cognitive						53		Design
Processes			2# ×	Meta-	Fundame	Criteria	Practical	instrument
	Factu	Conceptu	Procedu	cognitive	ntal	° &	Constrai	alities
	al	al	ral		Design	Specificat	nts	
			7 P		Principles	ions		
Explain	C01							
Analyze		CO2						
Explain	CO3	CO3						
Discuss	CO4	CO4	CO4	MI	T			
Calculate	C05	CO5	C05	st for E	xcellen	се		
Discuss	C06	C06	C06					

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/ Laboratory/ Field sessions, and present it in the table format indicated with sample course.

Departmental PSO:

PSO 1: Inculcate the ability to utilize applied sciences, transform methods, discrete mathematics, applied differential equations and numerical methods in support of electrical and electronics engineering.

PSO 2: Demonstrate the ability to analyze, design & implement control and instrumentation systems with computer and power systems.

PSO 3: Student should be able to use computational techniques to design and analyze electrical systems.

	Course Outcome	POs/	CL	КС	Class	Tutorial
		PSOs		~5	Sessions	(Hrs.)
C01	Explain the fundamental concept of	P01,	R	F	06	00
	reactive power and Illustrate various methods of reactive power compensation.	PSO3	A			
CO2		P01,	U	C	06	00
	Analyse the stability of power system	P02				
	using swing equation and equal area criteria.	PSO1	llen	C.C.		
		and 2		~~~		
C03	Explain excitation System, types and	7, PO1	AP	F,C	06	00
	Illustrate the control and protective	and 12				
	functions of it.	PSO2				
C04	Discuss the Load frequency control	PO1, 4	An	F, C,	06	00
	mechanism of single area and two area system.	PSO2		& P		
CO5	Calculate the distribution of load	P01,2,4	An	F, C,	06	00
	between two power plants and comment on the method of load	PSO2		& P		

Power system operation and control - Credits: 3:0:0

G.S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY

Chh. Sambhajinagar

(An Autonomous Institute)

Department of Electrical Engineering

	Total Hours of instruct	36	00			
	AC transmission system performance	PSO2		& P		
C06	Discuss FACTS technology to improve	PO1, 2	С	F, C,	06	00
	dispatching for economic operation of such plants.					

Cognitive levels

R-Remember, U-Understand, AP- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practical

Constraints, DI- Design Instrumentalities

Step 4: Decide on Strength of CO-PO/PSO Mapping

• Example (Showing only non-zero mapping entries):

CO	PO	PO 2	РО	PO 4	P07	РО	PSO1	PSO2	PSO3
	1		3		Š	12			
C01	2				2	1			1
CO2	2	2				12	1	1	
CO3	2		0	uest	for E:		nce	1	
CO4	1			1				1	
C05	2	1		2				1	
C06	2	2					1		
Average	2	1.6							
Mapping	2	2							
Strength									

Step 5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies and Instruction types.

MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar

(An Autonomous Institute)

Department of Electrical Engineering

Cos	Assessment Items/Asses	ssment	Delivery	Instruction types
	Instruments		Technologies	
C01	MSE - I	ESE	Chalk & Board	Teaching Plan
			PPT Presentation	
			Video Lecture	
CO2	CO2 MSE-I ESE		Chalk & Board	Teaching Plan
			PPT Presentation	
			Video Lecture	
CO3	CO3 MSE -II		Chalk & Board	Teaching Plan
		A INS	PPT Presentation	
		Shirt	Video Lecture	
CO4	MSE-II	ESE	Chalk & Board	Teaching Plan
			PPT Presentation	
	36.5		Video Lecture	
C05	Teacher Assessment	ESE	Chalk & Board	Teaching Plan
		78	PPT Presentation	
		NA:	Video Lecture	
C06	Continuous Internal	ESE	Chalk & Board	Teaching Plan
	Assessment		PPT Presentation	
		N	Video Lecture	

Quest for Excellence

Shital M. Mule Course Teacher

MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar (An Autonomous Institute) Department of Electrical Engineering

Class: Final Year B.Tech(EE)(Autonomous)

Course: EED433 Electric Hybrid Vehicle

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

Structure of a CO statement

CO 1: Demonstrate the basic concepts of Conventional, Electric, Hybrid EV and state the impact of of conventional vehicles on the society (Analyze)

CO 2: Demonstrate different configurations of electric and hybrid electric drive trains with power flow (Understand)

CO 3: Discuss the propulsion unit for electric and hybrid vehicles (Understand)

CO 4: Demonstrate

BLDC drive systems and various communication protocols for EV (Understand)

CO 5: Compare various energy storage and EV charging systems(Understand)

CO6: Demonstrate the breaking system for EV and EHV(Understand)

CO1: Demonstrate the basic concepts of Conventional, Electric, Hybrid EV and state the impact of conventional vehicles on the society

Action: Demonstrate

- Knowledge: basic concept of EV with impact of EV and EhV on environment and society (Conceptual, Fatuall)
- Condition: electric ,hybrid electric vehivle

CO2: Demonstrate different configurations of electric and hybrid electric drive trains with power flow

Action: Demonstrate

- Knowledge: different configuration (Conceptual, Procedural)
- Condition: EV and EHV
- Criteria: with power flow

${\bf CO3}$: Discuss the propulsion unit for electric and hybrid vehicles

Action: Demonstrate

- Knowledge: propulsion unit (Conceptual, Procedural)
- *Condition:* electric and hybrid vehicles

CO 4: Demonstrate BLDC drive systems and various communication protocols for EV

Action: Describe

- *Knowledge:* BLDC drive systems (Conceptual)
- Condition: various communication protocols for EV(, Procedural)
- •

CO 5: Compare various energy storage and EV charging systems

Action: Demonstrate

- Knowledge: operation of single phase and three phase inverter(Conceptual, Procedural)
- Condition: types of single phase inverterand mode of three phase Inverter

CO6: Demonstrate the breaking system for EV and EHV

Action: Illustrate

- *Knowledge:* energy storage
- Condition: Types of Energy storage (Conceptual, Procedural)

Locating Sample CO in Revised Bloom-Vincenti Taxonomy Table

		Knowledge Categories										
Cognitive Processes	Factual	Conceptual	Procedural	Meta- cognitive	Fundament al Design Principles	Criteria & Specifications	Practical Constraints	Design instrumentaliti es				
Remember	C01			25								
Understand	C01	C01										
Analyze		CO3,CO4, CO5,CO6	CO3,CO4, CO5,CO6	M I	T	100						
Evaluate			Zue.	, jor 1	ncener							
Create												

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories(KC),numberofClass/Laboratory/Fieldsessions,andpresentitinthetableformat indicated with sample course Kinematics of Machines - Credits: 3:1:0

Departmental PSO:

PSO 1 : Inculcate the ability to utilize applied sciences, transform methods, discrete mathematics, applied differential equations and numerical methods in support of electrical and electronics engineering.

PSO 2 : Demonstrate the ability to analyze, design & implement control and instrumentation systems with computer and power systems.

PSO 3 : Student should be able to use computational techniques to design and analyze electrical systems.

	Course Outcome	POs/ PSOs	CL	КС	Class	Tutorial
					Sessions	(Hrs)
C01	Demonstrate the basic concepts of Conventional,	P01,P02	An	F	6	-
	Electric, Hybrid EV and state the impact of of					
	conventional vehicles on the society and different					
	types of drive train topologies	2				
C02	Demonstrate different configurations of electric	P01, ,P012	U	СР	6	-
	and hybrid electric drive trains with power flow	1.53	3			
CO3	Discuss the propulsion unit for electric and hybrid	P01, P012	U	СР	6	-
	vehicles		24			
C04	Demonstrate BLDC drive systems and various	P02, P012	U	СР	6	
	communication protocols for EV		7			
			\sum_{i}			
C05	Compare various energy storage and EV charging	P02, ,P012	U	СР	6	
	systems					
C06	Demonstrate the breaking system for EV and EHV	P01,P012	U	СР	6	
	MI	T ^{IN}				
	Quest for Ex	ccellence	2			
Total	Hours of instruction	1			36	00

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental DesignPrinciples, C&S-Criteria andSpecifications, PS- PracticalConstraints, DI-DesignInstrumentalities

Step 4:Decide on Strength of CO-PO/PSO Mapping

• Example (Showing only non-zero mapping entries):

CO	P01	P02	P03	P04	P05	P09	PO 12	PS01	PSO2
C01	3	3					1	1	1
C02	3						1		1
CO3	3						1		1
CO4	3		2				1		1
CO5	3	RAINS	TITUTE				1		1
C06	-3			S.C.I.	5		1		1
Average	3				20		1	1	1
Mapping Strength	3				GY		1	1	1

Step 5:Identify the Assessment Items/Assessment Instruments, Delivery Technologies and Instruction types.

CO	P01	P02	P03	P04	P05	P09	PO 12
C01	MSE-I	5	3			1	Quiz
C02	MSE-I						1
C03	MSE-II			TM			1
C04	MSE-II	Duest t	or Ex	cellenc	e		1
C05	ТА						1
C06	CIE						1
Average	3						1
Mapping Strength	3					1	1

MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

COURSE NAME-Switchgear and Protection COURSE CO-ORDINATOR-Prof. G.D Karanjgaokar

Course Outcomes-

Sr. No.	Level	Statement
CO 1	Understand	Summarize the need of protection systems and protective zones and basic terminologies pertaining to relays.
CO 2	Analyze	Explain the relaying principles of numerical relays used for differential relays, directional relays, impedance relays, admittance relays
CO 3	Analyze	Explain the construction , working and application of Oil circuit breakers, SF6 Circuit breakers and vacuum circuit breakers and HRC fuses.
CO 4	Apply	Identify appropriate protection scheme for transmission lines.
CO 5	Apply	Select appropriate protection scheme for transformers and alternators
CO 6	Understand	Demonstrate the basic principles and applications of current transformers and voltage transformers.

CO1- Summarize the need of protection systems and protective zones and basic terminologies pertaining to relays

- Action: -Summarize (Remember),
- Knowledge: need of protection systems and protective zones and terminologies
- Condition: pertaining to relays
- Criteria: Basic

CO2 Explain the relaying principles of numerical relays used for differential relays, directional relays, impedance relays, admittance relays.

- Action: Explain (remember, apply, Analyze)
- Knowledge: relaying principles of numerical relays (Conceptual and Procedural)
- Criterion: used for differential relays, directional relays, impedance relays, admittance relays

co3- Explain the construction , working and application of Oil circuit breakers, SF6 Circuit breakers and vacuum circuit breakers and HRC Fuses

- Action: Explain
- *Knowledge:* construction , working and application

- *Criterion:* Oil circuit breakers, SF6 Circuit breakers and vacuum circuit breakers and HRC Fuses
- **CO-4-** Identify appropriate protection scheme for transmission lines
 - Action: Identify (Remember, Apply),
 - *Knowledge:* appropriate protection scheme
 - *Criteria:* transmission lines

CO-5- Select appropriate protection scheme for transformers and alternators

- Action: Select (Remember, Apply),
- Knowledge: appropriate protection scheme
- Criteria: transformers and alternators

CO-6- Demonstrate the basic principles and applications of current transformers and voltage transformers

- Action: Demonstrate (Remember, Apply),
- Knowledge: basic principles and applications
- Criteria: current transformers and voltage transformers

		Knowledge Categories										
Cognitive								Design				
Processes				Meta-	Fundame	Criteria &	Practical	instrumental				
	Factual	Conceptua	Procedur	cognitive	ntal	Specificatio	Constrain	ities				
		l	al		Design	ns	ts					
					Principles							
Remember		CO 1	CO1, CO5,		CO 3, CO							
		CO2	C06		4							
Understand		C01	CO2									
Apply		C02	CO2, CO5,									

• Locating Sample CO in Revised Bloom-Vincenti Taxonomy Table

MAHARASHTRA INSTITUTE OF TECHNOLOGY

Chh. Sambhajinagar (An Autonomous Institute) Department of Electrical Engineering

		C06			
Analyze	CO 2		CO3		
Evaluate					
Create					

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories(KC),numberofClass/Laboratory/Fieldsessions,andpresentitinthetableformat indicated with sample course Kinematics of Machines - Credits: 3:1:0

	Course Outcome	POs/	CL	KC	Class	Tutorial
		PSOs			Sessions	(Hrs)
C01	Summarize the need of protection systems	P01,	U	C,P	6	00
	and protective zones and basic terminologies pertaining to relays.	PSO1	10			
CO2	Explain the relaying principles of	P02,	R	U,C,	6	
	numerical relays used for differential relays, directional relays, impedance relays, admittance relays	PSO2	0 #Y	Р		
CO3	Explain the construction , working and	P01,	An	C,P	6	
	application of Oil circuit breakers, SF6 Circuit breakers and vacuum circuit breakers and HRC fuses.	PSO1	5			
CO	Identify appropriate protection scheme for	P04,	Ap	FDP,	6	
4	transmission lines.	PSO3		C&S		
CO	Select appropriate protection scheme for	PO 4	Ар		6	
5	transformers and alternators MITT	PSO3				
CO	Demonstrate the basic principles and	PO 1	U		6	
6	applications of current transformers and voltage transformers.	PSO1				
Total	Hours of instruction		•		36	

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental DesignPrinciples, C&S-Criteria andSpecifications, PS- PracticalConstraints, DI-DesignInstrumentalities

Step 4:Decide on Strength of CO-PO/PSO Mapping

COs	P01	P02	P03	P04	P012	PSO1	PSO2	PSO3
C01	3				1	1		
CO2		1			1		1	
CO3	3				1	1		
CO4				1	1	5		1
CO5					1	05		1
CO6	3		2	SH	1	1	1	
Mapping	3	1	5		1	1	L 1	1

Step 5:Identify the Assessment Items/Assessment Instruments, Delivery Technologies and Instruction types.

СО	P01	P02	P03	P04	P011	PO 12	PS01
C01	MSE 1			0	5.		
C02		MSE 1	G	3			
CO3	MSE 2						
CO4				ТА			
CO5		Ι	ΊΙΤ	CIE 1			
C06	CIE 2	est fo	r Exc	ellen	:e		

G.S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar

(An Autonomous Institute) Department of Electrical Engineering

Course: Testing & Maintenance Course code: EED438 Class: Final Year (EE)

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

Structure of a CO statement

- Action: Represents a cognitive/ affective/ psychomotor activity the learner should perform. An action is indicated by an action verb, occasionally two, representing the concerned cognitive process(es).
- Knowledge: Represents the specific knowledge from any one or more of the eight knowledge categories
- **Condition:** Represents the process the learner is expected to follow or the condition under which to perform the action (This is an optional element of CO)
- Criteria: Represent the parameters that characterize the acceptability levels of performing the action (This is an optional element of CO)

C01	Explain different types of testing, methods of testing and maintenance etc
C02	Understand comprehensive testing techniques of electrical equipment's .
CO3	Explain troubleshooting and maintenance of household appliances
CO4	Gain knowledge of analysis tools and their response
C05	Classify substation and explain substation layout study , earthing in detail
C06	To perform different testing methods like megger testing, resistance testing, turns ratio test

Step 2: Locate COs in Revised Bloom-Vincenti Taxonomy Table

Locating Sample CO in Revised Bloom-Vincenti Taxonomy Table

				Kn	owledge									
		Quest for Categories ce												
Cognitiv								Design						
е				Metac	Fundamen	Criteria	Practical	instrumenta						
Processe	Factua	Conceptual	Procedur	ognitiv	tal Design	&	Constrai	lities						
S	I		al	е	Principles	Specifica	nts							
						tions								
Remember	CO2	CO1,	CO3											
Understand	C02	C01,C0	CO3,				C06							
		2,CO4 CO5	CO6				00							
Apply														

MAHARASHTRA INSTITUTE OF TECHNOLOGY

Chh. Sambhajinagar (An Autonomous Institute)

Department of Electrical Engineering

Analyze	CO3,	CO3			
Evaluate					
Create					

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/ Laboratory/ Field sessions, and present it in the table format indicated with sample course.

	Course Outcome	POs/	CL	KC	Class	Tutorial
		PSOs			Sessions	(Hrs)
CO1	Explain different types of testing, methods of testing and maintenance etc	PO1,PSO 1, PSO2	R, U	С	6	00
CO2	Understand comprehensive testing techniques of electrical equipment's	PO2,PSO 1, PSO2	R, U	F, C	6	00
CO3	Explain troubleshooting and maintenance of household appliances	PO2,PSO 1, PSO2	An	C, P	6	00
CO4	Gain knowledge of analysis tools and their response	PO1,PSO 1, PSO2	U	С	6	00
CO5	Classify substation and explain substation layout study , earthing in detail	PO6,PSO 1,PSO2	U	U	6	00
CO6	To perform different testing methods like megger testing, resistance testing, turns ratio test MII Quest for Ex	PO1,PSO 1, PSO2	U	P, C	6	00
Total	Hours of instruction	1			36	00

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practical Constraints, DI- Design Instrumentalities

Step 4: Decide on Strength of CO-PO/PSO Mapping

Example (Showing only non-zero mapping entries):

СО	P01	PO2	PO3	P05	PO6	PO11	PO12	PS01	PSO2
C01	2							2	2
CO2		2						2	2
CO3		2						2	2
CO4	2							2	2
CO5					2			2	2
CO6	2							2	2
Average	2	2		2	2			2	2
Mapping Strength	2.0	2.0		A CONTRACT	2	÷.		2.0	2.0

Step 5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies and Instruction types.

Cos	Assessment Items/Assessmer Instruments	it p	Delivery Technologies	Instruction types
CO1	CO1 MSE-I, CIE-I ESE		Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO2	MSE-I	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO3	MSE-II, TA	ESE West for	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO4	MSE-II	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO5	CIE-II	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO6	CIE-II	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan

MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar (An Autonomous Institute) Department of Electrical Engineering

Course- Battery Management System

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

Structure of a CO statement

- Action: Represents a cognitive/ affective/ psychomotor activity the learner should perform. An action is indicated by an action verb, occasionally two, representing the concerned cognitive process(es).
- Knowledge: Represents the specific knowledge from any one or more of the eight knowledge categories
- Condition: Represents the process the learner is expected to follow or the condition under which to perform the action (This is an optional element of CO)
- **Criteria:** Represent the parameters that characterize the acceptability levels of performing the action (This is an optional element of CO)
- CO1: **Define** the parameters of BMS (Remember)
- CO2: Explain the terms used in BMS (Understand)
- CO3: Describe the BMS requirement (Apply)
- CO4: Use of algorithm for BMS (Apply)

Step 2: Locate COs in Revised Bloom-Vincenti Taxonomy Table

Locating Sample CO in Revised Bloom-Vincenti Taxonomy Table

	Knowledge												
~	Categories												
Cognitive					Т			Design					
Processes			Que	Meta-	Fundame	Criteria	Practical	instrumental					
	Factua	Conceptu	Procedur	cognitive	ntal	&	Constrain	ities					
	1	al	al		Design	Specificati	ts						
					Principles	ons							
Remember	CO1												
		CO2											
Understand													
	CO3	CO3	CO3										
Apply	CO4	CO4											

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/ Laboratory/ Field sessions, and present it in the table format indicated with sample course.

Course Outcome POs/ PSOs KC Class Tutorial CL Sessions (Hrs) F 04 00 CO1 Define the parameters of PO1, PO12, PSO1 R BMS (Remember) CO₂ **Explain** the terms used PO1, PO6, PO12, PSO1 U С 09 00 in BMS (Understand) CO3 Describe the BMS PO1, PPO6, PO7, O2, PO3, Ap F,C, 07 00 PSO1 P requirement (Apply) CO4 PO1,PO2,PO5, PSO3 F,C, 00 Use of algorithm for Ap 02 Р BMS (Apply) **Total Hours of instruction** 36 00

Battery Management System - Credits: 3:0:0

Quest for Excellence

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practical Constraints,

DI- Design Instrumentalities

Step 4: Decide on Strength of CO-PO/PSO Mapping

CO	PO	PO 2	PO	PO 5	PO	PO 7	PO 12	PSO1	PSO2	PSO3				
	1		3		6									
CO1	2						2	1						
CO2	2				1		1	1						
CO3	2	2	2		2	1		1						
CO4	2	1		2						1				
Average	2	1.5	2	2	1.5	1	1.5	3		1				
Mapping Strength	2	1.5	2	2	1.5		1.5	3		1				

• Example (Showing only non-zero mapping entries):

Step 5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies and Instruction types.

Cos	Assessment Items/Assessm Instruments	nent	Delivery Technologies	Instruction types
CO1	MID Sem Exam-1/ Comprehensive Viva Voce/ MID Sem Exam- 2/Teacher Assessment	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO2	MID Sem Exam-1/ Comprehensive Viva Voce / MID Sem Exam-2/ Teacher Assessment	ESE Quest fo	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO3	MID Sem Exam-1/Say Something / ABCD Whisper /MID Sem Exam-2/ Continuous Internal Evaluation	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO4	MID Sem Exam-1/Say Something / ABCD Whisper/ MID Sem Exam-2/ Continuous Internal Evaluation	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan

MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar (An Autonomous Institute) Department of Electrical Engineering

Course- Energy Conservation and Audit

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

Structure of a CO statement

- Action: Represents a cognitive/ affective/ psychomotor activity the learner should perform. An action is indicated by an action verb, occasionally two, representing the concerned cognitive process(es).
- Knowledge: Represents the specific knowledge from any one or more of the eight knowledge categories
- Condition: Represents the process the learner is expected to follow or the condition under which to perform the action (This is an optional element of CO)
- **Criteria:** Represent the parameters that characterize the acceptability levels of performing the action (This is an optional element of CO)
- CO1: **Define** the terms for energy conservation (Remember)
- CO2: Describe the Methodology in audit (Understand)
- CO3: Explain Energy Efficiency in various Electrical Systems (Understand)
- CO4: Illustrate the terms used in Energy Economics (Apply)
- **Step 2**: Locate COs in Revised Bloom-Vincenti Taxonomy Table

Locating Sample CO in Revised Bloom-Vincenti Taxonomy Table

	Knowledge Categories										
Cognitive				MI	\mathbf{T}^{m}			Design			
Processes			Oue	Meta-	Fundame	Criteria	Practical	instrumental			
	Factua	Conceptu	Procedur	cognitive	ntal	&	Constrain	ities			
	1	al	al		Design	Specificati	ts				
					Principles	ons					
Remember	CO1										
		CO2									
Understand			CO3								
	CO4	CO4									
Apply											

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/ Laboratory/ Field sessions, and present it in the table format indicated with sample course.

	Course Outcome	POs/ PSOs	CL	KC	Class	Tutorial
					Sessions	(Hrs)
CO1	Define the terms for	PO1,	R	F	04	00
	energy conservation	PO3,PO6,PO7,PSO1				
	(Remember)		5			
CO2	Describe the	PO2,PO12, PSO2	U	С	08	00
	Methodology in audit	536 *		2		
	(Understand)		\mathbb{D}	ŝ		
CO3	Explain Energy	PO1,PO3,PO6,PO7,	U	С	06	00
	Efficiency in various	PSO1		2		
	Electrical Systems		10	2		
	(Understand)	N G P	5			
CO4	Illustrate the terms used	PO1,PO2,PO4,PO5,	Ap	F,C,	04	00
	in Energy Economics	PSO1		Р		
	(Apply)	MIT				
Total	Hours of instruction	Quest for Excel	lenc	е	36	00

Energy Conservation and Audit- Credits: 3:0:0

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practical Constraints,

DI- Design Instrumentalities

MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar (An Autonomous Institute) Department of Electrical Engineering

Step 4: Decide on Strength of CO-PO/PSO Mapping

• Example (Showing only non-zero mapping entries):

CO	PO	PO 2	РО	PO 4	PO	PO 7	PSO1	PSO2	PSO3
	1		3		6				
CO1	2		2		2	2	1		
CO2		2						1	
CO3	2		2		2	2	1		
CO4	2	2		2			2		
Average	2	2	2	2	2	2	1.3	1	
Mapping Strength	2	2	2	2 SHIRA			1.3	1	

Step 5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies and Instruction types.

Cos	Assessment Items/Assessme	ent	Delivery	Instruction types
	Instruments		Technologies	
CO1	MID Sem Exam-1/ Quiz/ MID Sem Exam- 2/Teacher Assessment	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO2	MID Sem Exam-1/ Quiz/ ABCD Whisper /MID Sem Exam-2/ Teacher Assessment	ESE N Quest for	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO3	MID Sem Exam-1/Say Something /MID Sem Exam-2/Continuous Internal Evaluation	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan
CO4	MID Sem Exam-1/ABCD Whisper/ Say Something /MID Sem Exam-2/ Continuous Internal Evaluation	ESE	Chalk & Board PPT Presentation Video Lecture	Teaching Plan

Instructional System Design

Course Coordinator: Dr. A. S. Borole

Course Name: Photovoltaic System Design (OE V)

Class: Final Year B.Tech-EE (Autonomous) 2024-25 Semester: VII

Step 1: Write Course Outcomes using Revised Bloom's Taxonomy

Structure of a CO statement

CO1: Understand the basics of sources of energy

CO2: Justify the most adequate PV system architecture based on the specific requirements

CO3: Analyse the effect of atmospheric conditions on solar panels.

CO4: Calculate the energy received from Sun at various conditions.

CO5: Understand the basics of Battery and its sizing for PV.

CO6: Develop the MPPT Algorithms for grid interfacing.

Step 2: Locate COs in Revised Bloom-Vincenti Taxonomy Table

		Knowledge Categories										
Cognitive Processes	Factual	Conceptual	Procedural	Meta- cognitive	Fundament al Design Principles	Criteria & Specification s		Design instrumentaliti es				
Remember		CO5	CO3									
Understand	CO1, CO5		CO6									
Apply			CO4									
Analyze	CO3	CO2										
Evaluate		CO2, CO4										
Create			CO6									

Step 3: Tag course outcomes with Program Outcomes (POs,) Program Specific Outcomes (PSOs,) Cognitive Level (CL), Knowledge Categories (KC), number of Class/ Laboratory/ Field sessions, and present it in the table format indicated with for course ;

Electrical Machines-I (BTEEC302)

- Credits: 4:0:1

	Course Outcome	POs/ PSOs	CL	КС	Class Sessions	Tutorial (Hrs)
CO1	CO1: Understand the basics of sources of energy	PO1, 6,7, PSO1,2,3	An	F,C,P	6	00
CO2	CO2: Justify the most adequate PV system architecture based on the specific requirements	PO1,2,4,5,12 PSO1,2	An	С	6	00
CO3	CO3: Analyse the effect of atmospheric conditions on solar panels.	PO1,2,7,12 PSO1	U	С	6	00
CO4	CO4: Calculate the energy received from Sun at various conditions.	PO1,2,12 PSO1,3	A	F, C	6	00
CO5	CO5: Understand the basics of Battery and its sizing for PV.	PO1, 12 PSO1,2,3	A	F, C	6	00
CO6	CO6: Develop the MPPT <i>for</i> Algorithms for grid interfacing	PO1, 3,5,12, PSO1	An	С	6	00
Total	Hours of instruction	1	1	1	36	00

Cognitive levels

R-Remember, U-Understand, Ap- Apply, An-Analyse, E-Evaluate and C-Create.

Categories of Knowledge

General Categories

F- Factual, C- Conceptual, P- Procedural, M-Metacognitive

Categories specific to Engineering

FDP- Fundamental Design Principles, C&S-Criteria and Specifications, PS- Practical Constraints,

DI- Design Instrumentalities

Step 4: Decide on Strength of CO-PO/PSO Mapping

	Course Outcomes											
	Prog	ram Out	comes									
	Engin eering Knowl edge	Problem Analysis	Design/ Develop ment of Solution	Conduct Investiga tion of complex problem	Modern Tool usage	The Engineer and Society	Envir onmen t and Sustan ability	Ethics	Indivi dual and team work	Comm un ication	Project Manag ement And inance	Life Long learnin g
CO1: Apply the knowledge of basic circuital law and analyze the circuit using Kirchhoff's law.	2	~	J _{RA} II	STITU	TE OF	1	1					
CO2: Simplify the network using reduction techniques and Network simplification theorems.	2	2		1	1	100	3					1
CO3: Analyze circuits using graph theory.	2	1		1			1					1
CO4: Infer and evaluate transient response, Steady state response, network functions.	2	2		मि मिशिशण मेस			5					1
CO5: Apply the Laplace transform to linear circuits and systems.	2	Ľ		(FFFF								
CO6: Evaluate two-port network parameters and synthesize one port network.	2		3	~								1

Step 5: Identify the Assessment Items/Assessment Instruments, Delivery Technologies and Instruction

types.

Cos	Assessment Items/Assessment	uest fo	Delivery Technologies	Instruction types
	Instruments			
CO1	ISE-1, TA1	ESE	Chalk & Board, PPT Presentation	Teaching Plan
			Video Lecture	
CO2	ISE-1, CIE1	ESE	Chalk & Board, PPT Presentation	Teaching Plan
			Video Lecture	
CO3	ISE-2 CIE1	ESE	Chalk & Board, PPT Presentation	Teaching Plan
			Video Lecture	
CO4	ISE-2 CIE1	ESE	Chalk & Board, PPT Presentation	Teaching Plan
			Video Lecture	
CO5	CIE2	ESE	Chalk & Board, PPT Presentation	Teaching Plan

MAHARASHTRA INSTITUTE OF TECHNOLOGY Chh. Sambhajinagar

(An Autonomous Institute) Department of Electrical Engineering

Ī			Video Lecture	
	CO6	ESE	Chalk & Board, PPT Presentation	Teaching Plan
			Video Lecture	

Dr. A. S. Borole

Dr.S.M.Badave

Course Coordinator

