Maharashtra Institute of Technology (An Autonomous Institute)

> Proposed Honours* in Green Technology and Sustainability Engineering Major disciplines in Bachelor in Civil Engineering (With effect from A.Y. 2022-23)

Master Copy

	Course Code	Course		Teach Schen ours / V	ne		Exai	ninatio	1 Schem	e and	Marks			Cre	dit Sch	eme	
Year & Semester	ar & Semester			Theory	Tutorial	Practical	Mid-Sem Exam-1	Mid-Sem Exam-1	Mid-Sem Exam-1	Continuous Internal Evaluation	Teachers Assessment	Term work	Practical	Total Marks	Theory / * Tutorial	Practical	Total Credit
SY IV	CED901	Green Technology	04			15	15	10	10	50			100	04		04	
	CED971	Green Technology Laboratory			02						25		25		01	01	
		Total	04	-	02			100)		25		125	04	01	05	
	-								*			-		Tota	l Cred	its=0	
TYV	CED902	Sustainable Materials and Green Building	04			15	15	10	10	50			100	04		04	
		Total	04	-	-			100)				100	04		04	
														Tota	l Cred	its=0	
TY VI	CED903	Green Building Rating System	04			15	15	10	10	50			100	04		04	
-	CED972	Green Building Rating System Laboratory			02						25		25		01	01	
		Total	04		02		5	100)		25		125	04	01	05	
														Total	Cred	its=0	
Final B. Tech. VII	CED904	Sustainable Engineering Concepts and Lifecycle Analysis	04			15	15	10	10	50			100	04		04	
		Total	04					100					100	04		04	
														Total	Cred	its=0	
Final	CED973	Mini Project			04						25	25	50		02	02	
B. Tech. VIII		Total			04						25	25	50		02	02	
*	-													Total	Cred	ite=0	

Dean Academics Midharashtra Institute of Technology Aurangabail.

Director Maharashtra Institute of Technology, Aurangabad.

xh

Master Copy

Page 1 of 16

	Maharashtra Institute of Technology, Aurangabad						
	(An Autonomous Institute)						
	Department of Civil Engineering						
Syllab	us of SY B. Tech. (Honours* in Green Technology and Sustainability Engineering)						
	Semester-IV						
Course Cod	e: CED901 Credits: 4-0-0						
Course: Gre	Mid Semester Examination-I: 15 Marks						
Teaching Sc	ing Scheme: Mid Semester Examination-II: 15 Marks						
Theory: 04	Hrs/week Continuous Internal Evaluation:10 Marks						
Futorial: 00	Hr/week Teacher Assessment: 10 Marks						
Practical: 02	End Semester Examination: 50 Marks						
	End Semester Examination (Duration): 02 Hrs						
Prerequisite	Basics of Environmental science, introduction to ecology, basic concepts of energy						
17	generation and conservation.						
Te di sina	1. To introduce concept of green technology.						
Objection	2. To impart the knowledge of carbon emission.						
Objectives	3. To introduce concept of life cycle assessment						
	4. To learn the importance of green fuels and its impact on environment.						
1. 1. 1. 1.	Introduction to green technology: Definition of Green Technology and its						
	Importance, History and evolution of green technology, advantages and disadvantages						
	of green technologies, factors affecting green technologies, Role of Industry,						
Unit-I	Government and Institutions, introduction to industrial Ecology and role of industrial						
	ecology in green technology.						
	(08 Hrs)						
	Cleaner Production (CP): Definition, Importance, Principles of Cleaner Production						
	and its Benefits, Role of Industry, Government and Institutions in cleaner production,						
J nit-II	clean development mechanism, reuse, recovery, recycle, raw material substitution-						
	Wealth from waste.						
	(08 Hrs)						
	CP awareness and life cycle assessment: Pollution Prevention and Cleaner						
	Production Awareness Plan, Waste audit, Environmental Statement, carbon credit,						
nit-III	carbon trading. Introduction to Life Cycle Assessment (LCA) and Elements of LCA.						
		So					
	(08 Hrs)	Board of Studies Engineering					
	Energy sources: Availability and need of conventional energy resources, major	Board of S Engineering					
	environmental problems related to the conventional energy resources, future	pard					
	possibilities of energy need and availability. Non-conventional energy sources: Solar Energy, devices and technology used in solar	Chairman Bo					
	Non conventional anamori commence la	2.00					

lage 2 of 16

	ener	gy conversion, their princi	ples, working and app	lication.	(00
					(08 Hi
	Gree	en fuels: Definition of Gre	en Fuels, their benefit	ts and challenges	s, comparison of
Unit-V	gree	n fuels with conventional f	ossil fuels with refere	nce to environm	ental, economic
	and s	social impacts, public polic	eies and market driver	n initiatives	*
	Bion	nass energy: Concept of bio	omass energy utilizati	ion, types of bior	nass.
					(08 Hı
*		d, tidal and geothermal e			
		principles, and suitability		oduction to tidal	and geotherma
Unit-VI	energ	gy and their suitability in va	arious regions.		
					(08 Hr
	Sr.	Title	Author	Publication	Edition
Ø - 1.	No.				
	1.	Pollution Prevention:		McGraw Hill	
		Fundamentals and	Paul L Bishop	International	Year 2000
	2	Practice			
	2.	Pollution Prevention and		World Bank	
-		Abatement Handbook –	World Bank Group	and UNEP,	V 1000
References		Towards Cleaner		Washington	Year 1998
		Production		D.C.	
	3.			Environmental	
				System	
			Prasad Modak,	Reviews,	
	A.	Cleaner Production Audit	C.Visvanathan and	No.38, Asian	Year 1995
		(1995)	Mandar Parasnis	Institute of	
				Technology,	
	¥ =			Bangkok	
	4.	Handbook of Organic	Bewik M.W.M.	Bewik	
		Waste Conversion	DOWIK IVI. W .IVI.	M.W.M.	1 st Edition

6 < 2 ۱

Pages of 16

*	Maharashtra Institute of T	Cechnology, Aurangabad				
	(An Autonomo					
	Department of Cir	· · ·				
Syllabus		Technology and Sustainability Engineering)				
	Semester-IV					
Course Coo	le: CED971					
	een Technology Laboratory	Credits: 0-0-1				
Teaching S		Term Work: 25 Marks				
Practical: 2		Term work. 25 Marks				
114001041. 2	To introduce the detailed concept of green technology and various sources of					
Objectives	energy as alternative to conventional					
-						
	The following assignments need to b					
		gy, its Importance and advantages and				
	disadvantages					
	2. Role of industrial ecology in g					
	3. Principles of Cleaner Product					
List of	4. Clean development mechanism	m, Wealth from waste.				
Practical	5. Carbon credit and carbon trad	ing.				
	6. Introduction to Life Cycle As	sessment and its Elements.				
	7. Comparison of conventional a	and Non-conventional energy sources.				
	8. Devices and technology used	in solar energy conversion.				
	9. Green Fuels, their benefit and	challenges.				
-	10. Concept of biomass energy ut	ilization, types of biomass				
	11. Suitability of wind, tidal and g	eothermal energy in Indian context,				
4						

The assessment of term work shall be done on the basis of the following.

- Continuous assessment.
- Performance of students.

2

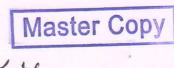
Chairman Board of Studies Civil Engineering MIT Aurangabad (An Autonomous Institute)

Page 4 of 16

	Maharashtra	Institute of Technology, Aurangabad				
	((An Autonomous Institute)				
	Dep	partment of Civil Engineering				
_ Syllab	us of TY B. Tech. (Honor	urs* in Green Technology and Sustainability Engineering)				
-		Semester-V				
Course Cod	e: CED902	Credits: 4-0-0				
Course: Sus	tainable Materials and	Mid Semester Examination-I: 15 Marks				
Green Build	ing	Mid Semester Examination-II: 15 Marks				
Teaching Sc	heme:	Continuous Internal Evaluation:10 Marks				
Theory: 04	Hrs/week	Teacher Assessment: 10 Marks				
Tutorial: 00	Hr/week	End Semester Examination: 50 Marks				
		End Semester Examination (Duration): 02 Hrs				
	Basics concepts of green	technology and sustainability, introduction to civil				
例.	engineering building mat	terials.				
-	The objective of this cou	urse is to expose the students to the concepts of sustainability				
Objectives	in the context of building and conventional engineered building materials.					
	The course also intends to make student aware of various green building councils.					
	Introduction to sustai	nability and green building: Introduction to sustainable				
	materials and the concept of green building. Embodied energy and Operational energy					
U nit-I	in Building and Life cycle energy. Ecological footprint, Bio- capacity and calculation					
	of planet equivalent.					
		(08 Hrs				
	Sustainable materials:	Role of Material: Carbon from Cement, alternative cements				
	and cementitious mater	ial, Alternative fuel for cements for reduction in carbor				
T 14 TT	emission. Sustainability	issues for concrete. Role of quality, minimization of natura				
Unit-II	resource utilization, High	volume fly ash concrete, geo-polymer concrete etc. concrete				
	with alternative material	for sustainability.				
		(08 Hrs)				
	Energy and resources of	consumption: Reduction in water consumption in concrete,				
	Recycled aggregate, Ener	rgy for grinding and crushing of cement, aggregate etc. and				
	reduction. Operational energy in building role of materials and thermal conductivity.					
Jnit-III	Clay Bricks, Types of kilns, Comparative energy performance emission performance					
	and financial performance	e, Indoor air quality.				
		(08 Hrs)				
	Operational energy cons	sumption: Paints, Adhesive and sealants for use in building,				
nit-IV	Volatile organic conten	t (VOC) emission issues and indoor air quality for				
-	Sustainability and Health	hazard. Operational energy reduction and net zero building,				
22	Pa	ges of 16 Master Copy				

	Opti	mization for design of buil	lding for energy efficie	ency and examp	ole of optimizatio				
		igh use of Evolutionary ge			1				
					(08 Hr				
	Ener	rgy and resources balance	e: Radiation budget, S	Surface water b					
Unit-V	Energy and resources balance: Radiation budget, Surface water balance, Effects of trees and microclimatic modification through greening. Use of Building Integrate								
		o Voltaic (BIPV) and oth			52 C				
	1	iency.		8.,					
*					(08 Hr				
	Ener	gy codes: ECBC require	ement, Concepts of C	Overall Therma					
		TV), Green Performance			18				
T */ X71									
Unit-VI	Environmental Design (LEED), Green Rating for Integrated Habitat Assessment (GRIHA) and Indian Green Building Council (IGBC).								
					(08 Hrs				
17	Sr.	Title	Author	Publication	Edition				
	No.								
		Sustainability							
	1.	Engineering: Concepts,	Allen, D. T. and	Prentice Hall	I st				
References		Design and Case Studies	Shonnard, D. R.						
•	2.	Engineering applications	Bradley. A.S;						
		in sustainable design and	Adebayo, A.O.,	Cengage learning	I st,				
		development	Maria,						
	3.	Environment Impact	Notification of		2006				
	1.7	Assessment Guidelines	Government of India	2006					
	4.	Basic Concepts in		Lewis					
		Environmental	Mackenthun, K.M.	Publication	1998				
		Management		London					
	5.		New Dalk: D	Publications-					
	-	CDULA Daties Sector	New Delhi Bureau of	Rating System	ECBC Code				
		GRIHA Rating System	Energy Efficiency	TERI	2007				
				Publications					

2


Page 6 of 16

		ute of Technology, Aurangabad				
	(An Au	itonomous Institute)				
		nt of Civil Engineering				
Syllabus o	f TY B. Tech. (Honours* in	Green Technology and Sustainability Engineering)				
		Semester-VI *				
Course Code:		Credits: 4-0-0				
Course: Green	Mid Semester Examination-I: 15 Marks					
Teaching Sche		Mid Semester Examination-II: 15 Marks				
Theory: 04 H	rs/week	Continuous Internal Evaluation:10 Marks				
Futorial: 00 H	r/week	Teacher Assessment: 10 Marks				
Practical: 02 H	rs/week	End Semester Examination: 50 Marks				
		End Semester Examination (Duration): 02 Hrs				
Prerequisite	Concept of green technolo	gy and energy conservation.				
	Introduction to sustainabil	ity.				
	1. To create interest	among students in green buildings and motivate them				
Objectives	to pursue knowledge in this field.					
Objectives	2. To give basic introduction about various green building rating systems.					
	3. To give practical view of rating of green buildings through case studies.					
	Introduction of green building: Concept of green building, History of green					
	building, Need of green building in present scenario, Importance of green					
– Unit-I	building Merits and demerits, Classification of green building, Assessment					
Unit-1	methods Global assessment and certification, Local assessment, GRIHA (Green					
	Rating for Integrated Habitat Assessment)					
		(08 Hrs.)				
	Rating System: LEED and	IGBC rating systems, their comparison and similarities,				
Unit-II	various points calculation,	ratings e.g. Silver, Gold and Platinum based on points				
0111-11	given under various criterion	1.				
		(08 Hrs.)				
	Building Planning: Planni	ng a building for less energy consumption, principles				
	of planning, optimized use	of natural resources with the help of sun diagram.				
U nit-III	Plan construction activities	for reduced energy consumption.				
*	Materials: Recycled, processed, locally available, sustainable material, new age					
	green materials.					
		(08 Hrs.)				
	Elements of Green Buildi	ngs: Light, Ventilation, Water recycle & optimization,				
J nit-IV	HVAC system, Electric effic	iency, Finishing items, Furniture & fixtures, Low VOC				
	Page	Master Copy				

Page 7 of 16

	pain	t, Landscaping and its i	naintenance.		
					(08 Hrs.)
- Unit-V	guid	rgy conservation: B elines, Energy Conser their calculation, carbon	vation Building (Code, Carbon foot	print, carbon credits
Unit-VI		e Studies: Industrial plex, Educational Instit			
	Sr. No.	Title	Author	Publication	Edition
	1.	Green Buildings: Professional guide to Concepts, Codes & Innovations,	Anthony Floyd	Cenage Learning	Handbook
References	2.	Green Building Materials: A guide to product selection & specification	Ross Spiegel & Dru meadows	John Wiley & Sons	1 st Edition
	3.	Guide to Energy Conservation, energy planning for buildings	Seymour Jurmul	Mc Grow-Hill	1 st Edition
+	4.	Energy efficient buildings in India	Mili Muzumdar	Ministry of Nonconventional Energy sources	Handbook

2

Page 8 of 16

Maharashtra Institute of Technology, Aurangabad

(An Autonomous Institute)

Department of Civil Engineering

Syllabus of TY B. Tech. (Honours* in Green Technology and Sustainability Engineering)

Semester VI

Course Code: CED972

Course: Laboratory of Green Building Rating System

Teaching Scheme:

Practical: 2 Hrs/week

	To introduce the detailed concept of green building rating system and energy					
Objectives	efficiency.					
	The following assignments need to be submitted:					
	1. Importance of green building and its evolution.					
1	2. Detailed criterion of LEED rating system.					
	3. Comparison and similarity between LEED and IGBC.					
List of	4. Principles of planning a building.					
Practical	5. New age green materials.					
÷	6. Water recycling and HVAC system.					
	7. Landscaping and its maintenance.					
	8. Carbon credits and reduction in carbon emission.					
	9. Case study of a commercial green building.					
	10. Case study of a green hotel building.					
The assessm	nent of term work shall be done based on the following.					
• Cont	tinuous assessment.					
• Perfo	ormance of students.					

2

Chairman Board of Studies Civil Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Credits: 0-0-1

Term Work: 25 Marks

Page 9 of 16

Maharashtra Institute of Technology, Aurangabad

(An Autonomous Institute)

Department of Civil Engineering

Syllabus of Final Year B. Tech. (Honours* in Green Technology and Sustainability Engineering)

Semester-VII

Course Code: CED904	Credits: 4-0-0
Course: Sustainable Engineering Concepts and	Mid Semester Examination-I: 15 Marks
Lifecycle Analysis	Mid Semester Examination-II: 15 Marks
Teaching Scheme:	Continuous Internal Evaluation:10 Marks
Theory: 04 Hrs/week	Teacher Assessment: 10 Marks
Tutorial: 00 Hr/week	End Semester Examination: 50 Marks
Practical: 00 Hrs/week	End Semester Examination (Duration): 02 Hrs

1

Prerequisit	e Introduction to the Basics concepts of sustainability, introduction to cleaner					
	production and green technology.					
	This course will introduce students to the fundamental concepts related to interaction					
Objectives	of industrial and environmental/ecological systems.					
	The application of life cycle assessment methodology using appropriate case studies.					
	Introduction to LCA: An Introduction to Sustainability Concepts and Life Cycle					
*	Analysis, comparison of life cycle of traditional and green construction materials,					
Unit-I	concept of Material flow and waste management, What it all means for an engineer,					
	Water energy and food nexus.					
	(08 Hrs)					
	Risk assessment and EIA: Risk and Life Cycle Framework for Sustainability,					
	concept of Risk, Environmental Risk Assessment, Examples of risk assessment,					
Unit-II	Chemicals and Health Efects, Characteristics of Environmental Problems.					
	Environmental Data Collection and concept of environmental impact assessment.					
	(08 Hrs)					
	Methodology of LCA: Life Cycle Analysis, Detailed Methodology and ISO					
-	Framework of Life Cycle Assessment, Detailed Example on LCA Comparisons, LCA					
Unit-III	Benefits and Drawbacks, Historical Development and LCA Steps from ISO					
	Framework: Life Cycle Inventory and Impact Assessments, Unit Processes and					
	System Boundary Data Quality, Procedure for Life Cycle Impact Assessment.					
	(08 Hrs)					
	LCA Studies: Factors for Good LCA Study, ISO Terminologies, Life Cycle					
Unit-IV	Assessment Steps Recap, Chemical Release and Fate and Transport, Green					

Page 10 of 16 Master Copy

Chairman Board of Studies Civil Engineering MIT Aurangabad

Ŧ	Sust	ainable Materials, study of	life cycle assessmen	t taking one exam	nple.	
					(08 Hrs	
Unit-V		gn for Sustainability:				
Unit-v		ronmental Indicators, So			nable Engineerin	
	Desi	gn Principles and Environ	mental Cost Analysis	•		
	Case	studies. Case Studies of	life quale analysis	1 0	(08 Hrs	
		e studies: Case Studies of truction, studies like Odor				
		Drying Methods, Biofue				
Unit-VI		lastic.	is for transportation	, Kerosene Lam	p vs. Solar Lamp	
					(08 Hrs	
-	Sr.	Title	Author	Publication	Edition	
*	No.				Lunion	
	1.	Sustainability			E	
		Engineering: Concepts,	Allen, D. T. and	Prentice Hall	I st	
leferences		Design and Case Studies	Shonnard, D. R.			
	2.	Engineering applications	Bradley. A.S;	Canadaa		
		in sustainable design and	Adebayo, A.O.,	Cengage learning	I st	
		development	Maria,	leannig		
	3.	Systems Analysis for		McGraw-Hill		
		Sustainable Engineering:	Ni bin Chang	Professional	Edition I	
		Theory and Applications		r roressionar		
	4.			English		
		Renewable Energy	Twidell, J. W. and	Language		
		Resources	Weir, A. D.	Book Society	7	
				(ELBS)		

< 3 6

Master Copy

Page 11 of 16

Maharashtra Institute of Technology, Aurangabad

(An Autonomous Institute)

Department of Civil Engineering

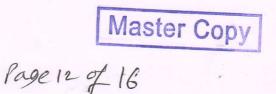
Syllabus of Final Year B. Tech. (Honours* in Green Technology and Sustainability Engineering)

Semester-VIII

Course Code: CED973	Credits: 0-0-2
Course: Mini Project	Term Work: 25 Marks
Teaching Scheme:	Practical: 25 Marks
Practical: 04 Hrs/week	

Prerequisite Introduction to the Basics concepts of sustainability, introduction to cleaner production and green technology, green materials, life cycle analysis.

To carry out a mini project and simple prototype in the area of interest based on the knowledge gained in Green technology and sustainable engineering from undergraduate.


Every individual student will be assigned a faculty to guide them. There will be three major reviews which will be carried out as listed below:

Review #	Requirement	Marks Weightage	
		Internal	External
0	Area/ Title selection	-	-
1	Literaturereview,10%Proposal for the project.		
2	Detailed experimentation and analysis of the project work.	20%	-
3	Final interpretation of results and presentation of prototype or simulation.	20%	-
End Semester Exam Final Viva-Voce and project demonstration.			50%

The assessment of term work shall be done on the basis of the following.

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Chairman Board of Studies Civil Engineering MIT Aurangabad (An Autonomous Institute)

Note:

- 1. No additional fees will be charged for students opting for Honours/ Minor Degree
- 2. All the courses in the Honours/ Minor will be conducted in offline mode.
- 3. Re-examination is not applicable in Honours and Minor Scheme. Student failing in any of the Minor or Honours courses, at any stage will be discontinued from the Scheme.
- 4. Examination Scheme and Passing rules will be as per the academic rules and regulations of B. Tech.

< 2

Chairman Board of Studies Civil Engineering MIT Aurangabad (An Autonomous Institute)

Page 13 of 16

Honours and Minor Scheme for academic year 2022-23

- Minor and Honor Scheme is introduced with additional 4 Theory courses, two Lab Courses and one mini project with 20 Credits. MOOCs are permitted to be part of the list, so also a few PG courses. Multiple Verticals are encouraged.
- The courses from main curriculum should not be in the list of the courses for Minor/Honours.
- Host Department to float the courses from Minor/ Honours-List as One/Two in each Semester (viz. 4th,5th,6th,7th,8th semester)
- • A Student opting for 'Honours' will NOT be ENTITLED to register for 'Minor'.
- As per this scheme students will get Minor Degree and Honours along with Degree (Major) which they are pursuing.
- Regular learners can complete the B. Tech. degree with 168 credits, for Brighter and interested Students opting Honours/Minor scheme, the UG program would be of 168 + 20 = 188 credits.
- The remedial assessment schemes such as Re-examination or summer term will NOT be applicable for Minor or Honors schemes. Student failing in any of the Minor or Honors courses, at any stage will be discontinued from the Scheme.

Sr.No.	Academic Scheme	Description	
01	Minor Degree	Students can select courses from other branches. e.g. If Mechanical Engineering student selects courses, from Civil Engineering under this scheme, he/she will get Major degree of Mechanical Engineering with Minor degree of Civil Engineering.	
02	Honours	 Students can select advanced courses from their respective branch in which they are perusing the degree. e.g. If Mechanical Engineering student selects advanced courses from same branch under this scheme, he/she will get Major degree along with Honours of Mechanical Engineering 	

- 1. Maximum batch size for minor is 30 and for Honours, it is 1/3rd of the total intake of the
 - respective department.

Chairman Board of Studies Civil Engineering MIT Aurangabad (An Autonomous Institute)

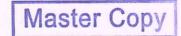
Master Copy Page 14 of 16

Details of this scheme are given below.

Minor Degree Scheme:

- Students can select courses from other branches. E.g. If Mechanical Engineering student selects courses from Civil Engineering under this scheme; he/she will get Major degree of Mechanical Engineering with Minor Degree of Civil Engineering.
- Student from ANY department is ELIGIBLE to apply for Minor degree from ANY OTHER DEPARTMENT.
- Student can select one course per semester from the list of courses of a branch of which he or she want to peruse Minor Degree.
- The Scheme will be started from second year 4th Semester of UG program.
- An applicant must have a minimum CGPA of 6.75 (up to 2nd Semester) and for Second Year Direct Admitted Diploma Students, with CGPA of 6.75 or equivalent.
- Mentor will be allotted from host departments to guide the students during his/her entire curriculum.
- Online courses may be selected from platforms like NPTEL/ edX/ Coursera/ Udacity/ Purdue Next/ Khan Academy/ QEEE/Udemy etc.
- While selecting the online course care must be take that it must be a certification course should be of 4/5 credits each as per the syllabus structure.
- Lab course/Internship/Mini project is permitted in Minor Scheme.

Honours Scheme:


• Students can select advanced courses from their respective branch in which they are perusing the degree. e. g. If Mechanical Engineering student selects advanced courses advanced courses from same branch under this scheme, he/she will get Major degree along with Honours of Mechanical Engineering from same branch under this scheme, he/she will get Major degree along with Honours in Mechanical Engineering.

Page 15 of 16

- Students from same department are eligible for Honours.
- The Scheme will be started from second year 4th Semester of UG program.

Master Copy

- An applicant must have a minimum CGPA of 6.00 (up to 2nd Semester) and for Second Year Direct Admitted Diploma Students, with CGPA of 6.00 or equivalent.
- Student can select one course per semester from the list of Honor courses of a branch in which they are perusing the degree.
- Mentor will be allotted from host departments to guide the students during his/her entire curriculum.
- Online courses may be selected from platforms like NPTEL/ edX/ Coursera/ Udacity/ Purdue Next/ Khan Academy/ QEEE/Udemy etc.
- While selecting the online course care must be take that it must be a certification course should be of 4/5 credits each as per the syllabus structure.
- Lab course/Internship/Mini -project is permitted in Honours Scheme.

Page 16 07 16