

59

MAHARASHTRA INSTITUTE OF TECHNOLOGY, AURANGABD

An Autonomous Institute Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra (India)

M. Tech. (Manufacturing Engineering) Syllabus

w.e.f. 2022-2023

FACULTY OF SCIENCE AND TECHNOLOGY

Syllabus Structure w.e.f. 2022-2023 (Choice Based Credit System)

		M.	Tech	. (Man	ufactu	ring E	nginee	ering)							
				S	emest	er-I									
Course		S	eachi Schem urs/W	ne	Examination Scheme and					Marks	5	Credits			
Code	Course Name	Theory	Tutorial	Practical	MSE-I	MSE-II	TA	ESE	TW	PR/OR	Total	TH	TUT	TW/PR	Total
MFG101	Research Methodology and IPR	3	1	-	15	15	20	50	-	-	100	3	1	-	4
MFG102	Advanced Manufacturing Processes	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG103	Digital Manufacturing	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG104	Quality System and Reliability Engineering	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG121 to MFG123	Professional Elective-I	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG111	Lab-I:Data Analytics Lab (R Programming)	-	-	2	-	- 1	-	-	25	-	25	-	-	1	1
MFG112	Lab-II: - Master CAM software	-	-	2	-	-	-	-	25	-	25	-	-	1	1
MFG113	Lab-III: -MATLAB	-	-	2	-	-	-	-	25	-	25	-	-	1	1
MFG114	Seminar	-	-	4	-	-	-	-	-	50	50	-	-	2	2
То	Total (Semester-I)			10	75	75	100	250	75	50 N	625 031	- 15 }{ (-5 бУ	21
, ,	0				P			1			4/	2	i		
. (Chairman Board of Studi	8		× •	-1-	Dean			Ch	airma	n Aca	demi	c C	oun	cil

hanical Engineering HT Aurangabad Conomous Institute) Dean Avademics Maharashtra Institute of Technology Aurangabad.

Chairman Academic Council MIT Aurangabad (An Autonomous Institute)

	1				Se	mester	·-II								
Course			achir chem rs/W	e	Examination Scheme and Marks							Credits			
Code	Course Name	Theory	Tutorial	Practical	MSE-I	MSE-II	TA	ESE	ΤW	PR/OR	Total	TH	TUT	TW/PR	Total
MFG141	Advanced Optimization Techniques	3	1	-	15	15	20	50	-	-	100	3	1	-	4
MFG142	Green Manufacturing	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG143	Characterization of Materials	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG144	Theory of Metal Forming	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG161 -163	Professional Elective-II	3	-		15	15	20	50	-	-	100	3	-	-	3
MFG151	Lab-IV (Advanced Optimization Techniques)	-	-	2		-	-		25	-	25	-	-	1	1
MFG152	Lab-V (Characterization of Materials)	-	-	2	-	-	-	-	25	-	25	-	-	1	1
FG153	Lab-VI: (Advanced MATLAB)	-	-	2	-	-	-	-	25	-	25	-	-	1	1
MFG154	Mini Project	- ,	-	4	-	-	-	-	-	50	50	-	-	2	2
	Total (Semester-II)	15	2	10	75	75	100	250	75	50	625	15	1	5	21
				N	1. 1 ec	n (Firs	st Year 200) 500	150	100	1250	30	2	10	42

P

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Dean

Dean Academics Maharashtra Institute of Technology Aurangabad. Chairman Academic Council MIT Aurangabad (An Autonomous Institute)

ii

1/h

				S	emest	ter-I	Π									
Course	Com N	5	eachi Schen urs/W	ne	Examination Scheme and Marks						Credits					
Code	Course Name	Theory	Tutorial	Practical	MSE-I	NCE II	MSE-II	TA	ESE	TW	PR/OR	Total	TH	TUT	TW/PR	Total
MFG201	MOOC Course	3	•	- -	-		-	-	100	-	-	100	3	-	-	3
FG211	Dissertation-I	-		18	-		-	-	-	50	100	150	-		9	9
0.0	Total (Semester-III)	3		18	-	<u>alia 9756203</u>	-	-	100	50	100	250	-	-	9	12
					Semes	ter-I	V							1	II	
Course	Course Name		Feach Scher ours/V	0		Exa	min	atior	n Sche	eme ar	ıd Mark	KS		Cı	redits	
Code		Theory	Tutorial	Practical	MSE-I	MSE-II	TA	ECE L	TOT	TW	PR/OR	Total	HT	TUT	TW/PR	Total
MFG251	Dissertation II	-	-	24	-	-	-		- 33.	100	100	200	-	-	12	12
	Total		_	24	-	-		- 100		100	100	200	-	-	12	12
	(Semester IV)			6 . Talaa				a di Dist n	1.1.1.1	20 DB 20 - 19	and the second second second		121212	10.313	a constant	12.648
		-			ech Se	econo	d Y	ear						No.		

Professional Elective-I

Course Code	Course Name
MFG121	Product life cycle management
MFG122	Sensors for Intelligent Manufacturing and Monitoring
MFG123	Non Conventional Machining

D. .

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute) all

MFG161

MFG162

MFG163

Course Code

Dean Academics Maharashtra Institute of Technology Aurangabad. they want of the second

iii

Course Name

Intelligent Industrial Systems

Mechatronics and Robotics

Finite Element Method

Chairman Academic Council MIT Aurangabad (An Autonomous Institute)

Professional Elective-II

	Dr. Babasaheb Ambedkar Mara	athwada University, Aurangabad					
	(Faculty of Science) Syllabus of M. Tech. (Manufa	ce and Technology) cturing Engineering) Semester-I					
Course Code:	MFG101	Credits: 3-1-0 (4)					
Course: Resea	arch Methodology & IPR	Mid Semester Examination-I: 15 Marks					
Teaching Sch	neme:	Mid Semester Examination-II: 15 Marks					
Theory: 3 Hr	s/week	Teacher Assessment: 20 Marks					
Tutorial: 1 Hr	./week	End Semester Examination: 50 Marks					
		End Semester Examination (Duration): 02 Hrs					
	Research Problems and Researc	ch Design					
	Meaning of research, types of r	esearch, steps in involved in research process,					
	criteria of good research, importa	nce of ethics in research, codes and policies for					
Unit-1	research ethics. Selection of resea	rch problem, steps involved in defining research					
	problem, need for research desig	n, types of research designs, basic principles of					
	experimental design, formal and in	nformal experimental design.					
		(05 Hrs)					
	Sampling Design						
	Need for sampling, steps in samp	ling design, different types of sampling designs,					
Unit-2	sampling distributions, concept of	of central limit and standard error, sources of					
0111-2	errors, population mean and p	proportion, sample size calculations, tests of					
	measurements for validity, reliabil	ity and practicality.					
		(05 Hrs)					
	Data collection, Processing and A	Analysis					
1 1		ection of data collection method, data processing					
	operations, statistics in research,	confidence level, measures of central tendency,					
	dispersion, asymmetry and relation						
		ient of correlation, simple & multiple regression					
	analysis, analysis of variance (AN	OVA), factor analysis methods.					
		(08 Hrs)					

(X Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **1** of **48**

	Hy	oothesis Test and Report	Writing		
	Con	cept of research hypothesis	s, concept of test	ing of hypothesis	, Parametric tests
	(z,	t, F and chi-square tests	s), Hypothesis t	esting of means	and correlation
Unit-4	coef	fficient, Non parametric tes	sts, significance of	of research report	writing, types of
	repo	orts, structure of the resear	ch report, steps	in report writing,	precautions and
		cs in writing report.			
					(07 Hrs)
	Intr	oduction to IPR			
	Orig	gin and evolution of IPR to	its present form a	nd use, Different	Tools of IPR and
Unit-5		t is the nature of these righ			
		lications of IPR			
					(05 Hrs)
	Pate	ents			
	Con	cept of inventions/discover	ies, patents protec	ct; benchmarks fo	r patentability of
	inve	ntions; Exceptions to pate	entability; Patent	ing issues in Bio	otechnology and
	com	puter based inventions, pr	ocess to apply f	or patents in Inc	lia and in other
Unit-6	cour	ntries around the world, The	e steps to granting	g of a patent; Opp	oosing grant of a
	pate	nt; term of a patent; rights	of a patent holde	r; challenging val	idity of a patent
	licer	using of patent rights; usir	ng patent rights	in the market pla	ace; compulsory
	licen	ise.			
					(06 Hrs)
References	Sr.	Title	Author	Publication	Edition
	No.				
	1	Research Methodology:	C. R. Kothari	New Age	4 th Edition
		Methods and Techniques	and G. Garg	International,	
				2019	
	2	Research Methodology	R.	PHI Learning,	2 nd Edition
			Pannerselvam	2014	
	3	Research Methodology-	D. Napolean	Laxmi	1st Edition

M

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **2** of **48**

	/				
		As Theoretical Approach	& B. Narayan	Publications,	
				2014	
-	4	Research Methods and	Bernard C.	Pearson	1st Edition
		Statistics	Beins &	Education Inc.,	
			Maureen A.	2012	
			McCarthy		
-	5	Research Methods	Stuart	CLES	1st Edition
		Handbook	MacDonald &		
			Nicola		
			Headlam		
	6	Intellectual Property	Ganguli	Tata	1st Edition
		RightsUnleashing the	Prabuddha	McGrawHill,	
		Knowledge Economy		2001	
	7	Intellectual Property	Neeraj Pandey	PHI Learning,	1st Edition
		Rights	and	2014	
			Khushdeep		
			Dharni		
	8	Fundamentals of	Ramakrishna	Notion Press,	1st Edition
		Intellectual Property	В	2017	
		Rights			
		I			

N

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **3** of **48**

	Dr. Babasaheb Ambedkar Ma	rathwada University, Aurangabad
	(Faculty of Scier	nce and Technology)
	Syllabus of M. Tech. (Manuf	acturing Engineering) Semester-I
Course Co	ode:MFG102	Credits: 3-0-0 (3)
Course: A	dvanced Manufacturing Processes	Mid Semester Examination-I: 15 Marks
Teaching	Scheme:	Mid Semester Examination-II: 15 Marks
Theory: 3	3 Hrs/week	Teacher Assessment: 20 Marks
		End Semester Examination: 50 Marks
		End Semester Examination (Duration): 02 Hrs
	Advanced Casting Processes Va	acuum mould casting
Unit-1		prative pattern casting, Ceramic shell castin asting, Semisolid metal casting, rheocasting.
		(06Hr:
	Advanced Metal Forming Proce	esses
Unit-2		ing (HERF) process. Electro-magnetic forming aulic forming, stretch forming, contour rol
	Advanced Welding Process	(06Hrs
Jnit-3	FSW, UWW: wet and dry. Auto	elding, ESW and EGW, Cold pressure welding omation in welding, Remote welding, Robotic cracker welding, selecting welding system.
nit-4	Surface Treatment	(06Hrs)

Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

	/													
	Scope	, Cleaners, Methods o	f cleaning, Surfac	e coating types	, Economics of									
	coatin	g, CVD, PVD, Thermal	spray coating, Ion	implantation, D	iffusion coating,									
		ond coating and cladding												
					(06Hrs)									
					(001113)									
	Non-o	conventional Machining	g Processes											
	Intro	duction, Need, Process	capabilities, Parar	netric analysis,	Advantages and									
Unit-5		vantages, Applications of												
		CHM, PAM.												
	,													
					(06Hrs)									
	High	-end Manufacturing Pr	ocesses											
					dury									
Unit-6		nufacturing Nano-techno												
		ography, Micromachining	, HSWI, Additive WI	anulacturing, 3-D	Printing.									
					(06Hrs)									
References	Sr.	Title	Author	Publication	Edition									
	No.													
	1	Manufacturing	Serope Kalpak	Pearson	5 th Edition									
		Processes for	jain and Steven	Education										
		Engineering Materials	R. Schmid	India										
	2	Manufacturing	Philip F.	Wiley Student	9 th Edition									
		Processes and Systems	Ostwald and	Edition										
			Jairo Munoz											
	3	Manufacturing	P. N. Rao	McGraw Hill	5 th Edition									
		Technology: Foundry,		Education										
		Forming and Welding												

(Y

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute) Page **5** of **48**

4	The	3D	Printing	Ben Redwood	3D Hubs	1 st Edition
	Handb	ook:				
	Techn	ologies,	Design	Fileman Schoffer		
	and A _l	pplicatio	ons	Brian Garrot		

Ú

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute) Page 6 of 48

	Dr. Bahasaheh Ambedkar Mar	athwada University, Aurangabad							
		ce and Technology)							
		cturing Engineering) Semester-I							
Course Code		Credits: 3-0-0 (3)							
	ital Manufacturing	Mid Semester Examination-I: 15 Marks							
Teaching Se	-	Mid Semester Examination-II: 15 Marks							
Theory: 3 H									
Theory, 51	IIS/WEEK	Teacher Assessment: 20 Marks							
		End Semester Examination: 50 Marks							
	End Semester Examination (Duration): 02 Hrs								
		gn of curves, Surfaces and solids, Introduction to							
Unit 1									
	manufacturing and assembly aspe	ects in design							
		(06Hrs)							
	Shape digitization: 3D object scanning, Solid reconstruction from point cloud and								
Unit 2	tessellated data, Downstream app	olications							
		(06Hrs)							
	Digital manufacturing: Subtra	ctive manufacturing: Basic architecture, Control							
Unit 3	hardware and software details, Te	ooling, Sculptured surface machining							
		(06Hrs)							
	Additive Manufacturing: B	asics, Hardware details and capabilities of							
Unit 4	commercial systems, Planning of	f material addition, Rapid tooling solutions							
		(06Hrs)							
	Computer Aided Process Plan	ning: CAPP and route sheet development, CAPP							
		ayout, Computer Aided Production Planning and							
Unit 5	Control, Algorithms for CAPP	ayout, computer Alded Froduction Planning and							
	Control, Algorithms for CAFF								
		(06Hrs)							
		ent Systems: Types, Management Information							
Unit 6		preparation, Shop-floor control, automatic							
	identification systems (sensors,	trackers), Product life cycle management; and							

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page **7** of **48**

Ú

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

	Intro	duction of Industry 4.0			
					(06Hrs)
References	Sr.	Title	Author	Publication	Edition
	No.				
	1	Fundamentals of Digital	Z. Zhou, S.	Springer, 2012	1 st Edition
		Manufacturing Science	Xie, D. Chen		
	2	Rapid Prototyping:	C.K. Chua,	John Wiley,	4 th Edition
		Principles and	K.F. Leong,	2010	
		Applications	C.S. Lim		
	3	Mastering CAD CAM	Ibrahim Zeid	McGraw Hill,	2 nd Edition
				2005	
	4	Automation, production	M P Groover	Pearson, 2016	4 th Edition
		systems, and computer-			
		aided manufacturing			
	5	Additive Manufacturing	Ian Gibson ·	Springer, 2015	2 nd Edition
		Technologies	David Rosen,		
			Brent Stucker		
	6	Additive Manufacturing	C. P. Paul, A.	McGraw Hill,	1 st Edition
			N. Jinoop	2021	

D.

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page 8 of 48

3

J.

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

	Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
	(Faculty of Science and Technology)			
	Syllabus of M. Tech. (Manufa	cturing Engineering) Semester-I		
Course Cod	e:MFG104	Credits: 3-0-0 (3)		
Course: Qua	ality System& Reliability	Mid Semester Examination-I: 15 Marks		
Engineering	, ,	Mid Semester Examination-II: 15 Marks		
Teaching S	cheme:	Teacher Assessment: 20 Marks		
Theory: 3 H	Irs/week	End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 02 Hrs		
	Fundamental of Quality			
	Concept of quality, Contribution	of Quality Gurus, Acceptance Sampling Plans for		
Unit 1	Attribute and Variable, Taguchi	Quality Loss Function and Concept of Robust		
Chit I	Design, Concept of Six Sigma, FMEA, QFD, Poka Yoke, ISO 9000 Series of			
	Standard, QS 9000, TQM, Quality Circles.			
	(06Hrs			
	Statistical Quality Control (SQC)			
	Definition, Benefits and Limitation of SQC, Quality Assurance, Quality Cost,			
Unit 2	Variation in Process & Process Capability, Theory of Control Chart, Uses of			
0	Control Chart, Control Chart for Variables-X Chart, R Chart and S Chart, Analysis			
	using control charts and reasoning.			
		(06Hrs)		
	Process Control for Attributes			
	Control Chart for Attributes, Control Chart for Proportion or Fraction Defectives -			
	p Chart and np Chart, Control Chart for Defects - C and U Charts, State of Control			
Unit 3	and Process Out of Control Identification in Charts, Inferences using control			
chit 5	charts. Acceptance Sampling, Lot By Lot Sampling, Types - Probability of			
		Multiple Sampling Techniques, O.C. Curves,		
		L and LTPD, Applications of Standard Sampling		
	Plans.			
		Page 9 of 48		
	A -	rage 9 of 48		

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

						(06Hrs)	
	Fund	amentals o	of Reliability				
	Conce	ept of Relia	bility, Failure	data analysis; Failu	ure rate; Bath tub	o curve; Concep	
	of bur	n in period	l; Useful life ar	nd wear out phase of	of a system; Mea	in time to failure	
Unit 4	(MTT	'F); Mean t	time between f	ailure, (MTBF) ar	nd mean time to	repair (MTTR)	
	Reliat	oility in ter	rms of Hazard	rate and failure	density, Condition	onal probability	
	Discre	ete probabi	lity distribution	IS.			
						(06Hrs	
	Time	to failure	distributions a	and Parametric Re	eliability Models	5	
	Introd	luction, Fai	ilure time estin	nation methods, Tl	he Likelihood Fu	unction, Method	
	of Le	ast Squares	s, Bayesian Ap	proach, Generation	n of Failure-Tim	e Data. Variou	
	distril	outions lik	ke Exponentia	l Distribution, F	Rayleigh Distrib	oution, Weibul	
Unit 5		Distribution, Normal distribution. Concept of Availability, Dependent Failures,					
	Redundancy and Standby. Parametric reliability models - Approaches based on						
		Historical Data, Operational Life Testing, Burn-In Testing and Accelerated Life					
	Testir	Testing.					
	(06H						
	System Reliability Evaluation						
	Reliability black diagrams, Series system, Parallel systems, Mixed-parallel						
Unit 6	systems, Consecutive k-out-of-n: F systems, Reliability of k-out-of-n systems, Reliability of k-out-of-n balanced systems, Complex reliability systems,						
				es of components.	Complex rena	bility systems,	
	licuu			es er components.		(06Hrs)	
References	Sr.					(001115)	
	No.		Title	Author	Publication	Edition	
	1.	Quality	Control &	B. L. Hanson &	Prentice Hall	2 nd Edition	
		Applicatio	on	P. M. Ghare	of India.		
	2.	Total	Quality	D.H.	Pearson	5 th Edition	
						Dunion	

Л Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page 10 of 48

i

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

	3.	Statistical Quality	Grant and	Hill	7thEdition
		Control	Leavenworth	Publishing	
				Company Ltd	
-	4.	Statistical Quality	Montgomery	Wiley	8 th Edition
		Control	D.C.	Publication	
	5.	Statistical Quality	R.C. Gupta	Khanna	10 th Edition
		Control		Publishers,	
				Delhi	
-	6.	An Introduction to	C. Ebling	McGraw Hill	12 th Edition
		Reliability &		Publication	
		Maintainability			
		Engineering			
	7.	Reliability engineering	Elsayed A	John Wiley &	2 nd Edition
			Elsayed	Sons Inc.	
				Publication	
	8.	Reliability Engineering	L.S. Srinath	Affiliated	4 th Edition
				East West	
				Press, New	
				Delhi.	

N Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **11** of **48**

4

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

	Dr. Babasaheb Ambedkar Ma	rathwada University, Aurangabad	
	(Faculty of Scier	nce and Technology)	
	Syllabus of M. Tech. (Manuf	acturing Engineering) Semester-I	
Course Code: MFG121 Credits: 3-0-0 (3)			
Course: Product Life Cycle Management Mid Semester Examination-I: 15 Marks		Mid Semester Examination-I: 15 Marks	
Teaching Scheme: Mid Semester Examination-II: 15 Marks			
Theory: 3 H	Hrs/week	Teacher Assessment: 20 Marks	
		End Semester Examination: 50 Marks	
		End Semester Examination (Duration): 02 Hrs	
	Introduction, Product Life Cycl	e, Product Management. Teams. Product Master	
Unit 1	plan, Case Study		
		(05Hrs)	
	Industry, Competition, Market	Segments. Product Requirements & Feasibility	
Unit 2	Case Study.		
		(05Hrs)	
	Production and Manufacturing	for PLM. Regulatory Environment, Product	
Unit 3	Warranties. Case Study		
		(08 Hrs)	
	Marketing for Product Manager	s, Post Launch Analysis and Management, Case	
Unit 4	Study		
		(07Hrs)	
	Survey of PLM Tools and S	Software. Matching to needs; Supply Chain	
Unit 5 Management for Product Managers case Study			
		(05 Hrs)	
	Customer Service, End of Proc	luct Life. Product Portfolio Management. Case	
Unit 6	Study		
Unit		(06Hrs)	

Page **12** of **48**

4 Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

References	Sr. No.	Title	Author	Publication	Edition
	1.	Product Lifecycle Management	Martin Elinger and Ralph Stelzer	Springer- Verlag,2009	1 st Edition
	2.	Product Lifecycle Management	M.Grieves	ТМН	2 nd Edition

ß

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute) Page **13** of **48**

Master Copy

Chever, for Exactly	geogle Luniversity Aurangabad				
Dr. Babasaheb Ambedkar Marathwada University, Aurangabad					
(Faculty of Science and Technology) Syllabus of M. Tech. (Manufacturing Engineering) Semester-I					
	Syllabus of M. Tech. (Manufa				
Course Code: MFG122 Credits: 3-0-0 (3)					
Course: Sen	sors for Intelligent	Mid Semester Examination-I: 15 Marks			
Manufacturi	ing and Monitoring	Mid Semester Examination-II: 15 Marks			
Teaching S	cheme:	Teacher Assessment: 20 Marks			
Lecture: 3 I	Hrs/week	End Semester Examination: 50 Marks			
		End Semester Examination (Duration): 02 Hrs			
	Basic Characteristics of Sensors				
	Introduction and role of senso	rs and continuous detection in manufacturing			
Unit 1	automation, sensor terminology, static and dynamic characteristics of transducers,				
	signal processing and signal conditioning, operational amplifiers, filters, protection				
	devices, analog to digital converter, and digital to analog converter.				
		(06Hrs)			
	Types of sensors and their Appli	ications in Automation			
	Principles of different sensors such as electrical, optical, surface acoustic waves,				
	pneumatic, magnetic, vision sensors, electro-optical, inductive, capacitive, resistive,				
Unit 2	photo sensors, through-beam detection, reflex detection, proximity detection,				
	ultrasonic and microwave sensors for effectiveness in manufacturing automation				
	processes.				
		(06Hrs)			
	Advanced Sensors in Manufactu	aring Systems			
	Sensors principles and condition monitoring parameters in manufacturing systems,				
	sensors for monitoring force, vibra	ation and noise, laser production, characteristics of			
Unit 3	lasers, types of laser sensors, bar	code sensors, benefits of bar coding, transponder,			
	RFID, electromagnetic identifier	r, optical encoders, colour sensors, unit colour			
	measurement, colour comparator	r, colour sensing algorithm, fuzzy logic colour			
		nic colour sensor in manufacturing automation.			
		-			

Ø Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page **14** of **48**

					(06Hrs)	
	Senso	rs for Special Application	8			
	A mu	Iti objective approach for	selection of sens	ors in manufactu	iring, cryogenic	
		acturing applications, ser				
Unit 4		rature detector using phot				
Unit 4		t, sensors in process manuf				
		control through sensors, o				
		s in decentralized manufact		5	,	
			0.1		(06Hrs)	
	Senso	rs for Precision Manufact	uring Applicatio	ns	. ,	
		rs for CNC machine tools,			elocity sensors	
TT		atic identification techniqu				
Unit 5						
	frequency systems, optical character and machine vision sensors, smart/intelligent sensors, integrated sensors, and adaptive control of machine tools.					
9		- ,	1		(06Hrs)	
	Role of Sensors and Control Technology in CIM					
	CIM plan, manufacturing enterprise model, design of CIM from viewpoints of					
	sensors and control systems, decision support system for CIM, analysis of CIM with					
Unit 6	sensors and control system, data acquisition for sensors and control systems in CIM,					
	and developing CIM strategies with emphasis on sensors role in manufacturing.					
Reference	Sr.				(06Hrs)	
	No.	Title	Author	Publication	Edition	
				McGraw Hill		
		Sensors and Control		International		
	1.	systems in	S. Soloman	EditionsUSA,	2 nd Edition	
		Manufacturing		1987		
		Standard Handbook of	D. M.	Chapman and		
	2.	Industrial Automation	Considiene, G.	Hall, 1975.	1 st Edition	
	L			1973.		

(0) Chairman Board of Studies Mechanical Engineering

MIT Aurangabad (An Autonomous Institute)

Master Copy

Page 15 of 48

		D. Considine		
	Tool and Manufacturing	Charles Wick,		
3.	Engineers	CMfgE	Tata McGraw-	Ath T 11
5.	HandbookVol. I, II, III	Raymond F	Hill1985	4 th Edition
	and IV	Veilleux		
	In-process Measurement		Marcel	
4.	and Control	S. D. Murphy	Dekker, 1983.	1 st Edition
	Applying Machine			
5.	Vision Sensor	N. Zuech	Jon S. Wilson	1 st Edition
	Technology Handbook			
		Thomas		
6.	Mechanical	Beckwith	Pearson	6 th Edition
0.	measurement	Roy	I carson	o Edition
		Marangoni		
7.	Sensors and Transducers	Ian Sinclair	Newnes	3 rd Edition
				5 Lattion

r Chairman Board of Studies Mechanical Engineering MIT Aurangabad

(An Autonomous Institute)

Master Copy

Page **16** of **48**

	Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
	(Faculty of Science and Technology)			
	Syllabus of M. Tech. (Manufa	cturing Engineering) Semester-I		
Course Code:	Course Code: MFG123 Credits: 3-0-0 (3)			
Course: Non	Conventional Machining	Mid Semester Examination-I: 15 Marks		
Teaching Scl	heme:	Mid Semester Examination-II: 15 Marks		
Lecture: 3 H	rs/week	Teacher Assessment: 20 Marks		
		End Semester Examination: 50 Marks		
End Semester Examination (Duration): 02 Hr				
	Introduction			
	Needs for nontraditional maching	ning processes, classification and comparative		
Unit 1	analysis of AJM, WJM, Ultrasonic Machining ECM, EDM, Laser Machining			
	Processes.			
(00				
	Abrasive jet machining			
Unit 2	Fundamental principle, application process parameters, MRR models. Water jet			
Unit 2	machining: Fundamental principl	e, application process parameters.		
		(06Hrs)		
	Chemical machining			
	1	ants and mask ants, photochemical process,		
Unit 3		principle Dynamics of ECM Process, Analysis of		
	material removal in Electrochemi	ical machining, tool design, applications.		
	Ultrasonic machining	(06Hrs)		
		ciples of USM, Process parameters, Transducers		
Unit 4		design: Shaws model of MRR, other applications		
Unit 4	of Ultrasonic machining.			
		(06Hrs)		
Unit 5	Electrical discharge machining			
		Page 17 of 48		
	m -			

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

ſ

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

Unit 6	Operating principles of EDM, Effects of Dielectric fluids, Electrode materials ,power generators, process parameters and their effects, flashing, wire EDM process, applications. Laser Beam Machining. (06Hrs) Lasing process Types of lasers (Gas and solid state), lasing mediums, laser material processing- cutting, drilling, surface treatment, special applications. (06Hrs)				
References	Sr. No.	Title	Author	Publication	Edition
	1.	Modern Machining Processes	P.C. Pandey & H.S. Shan	Tata McGraw Hill	1 st Edition
	2.	Advanced Machining Processes	Vijay K.Jain	Allied Publishers	2 nd Edition
	3.	Non traditional Manufacturing Processes	G.F. Benedict, Marcel Dekker Inc	CRC Press	1 st Edition
r	4.	Advanced Methods of Machining	McGeough, Joseph A	Chapman and Hall, London 1988	1 st Edition
	5.	New Technology	A. Bhattacharya	Institute of Engineers, India,1973	1 st Edition
	6.	Material & Processes in Manufacturing	Paul De Garmo, J.T. Black and Ronald A. Kohser	Prentice Hall College Div	8 th Edition
	7.	Advanced Machining Processes	Hassan Abdel- Gawad El-Hofy	Tata McGraw Hill	1 st Edition

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **18** of **48**

Master Copy

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science and Technology)

Syllabus of M. Tech. (Manufacturing Engineering) Semester-I

Course Code:MFG111

Credits: 0-0-1 (1)

Course: Lab-I (Data Analytics Lab: -R

Programming)

Credits: 1

Teaching Scheme:

Practical/Oral Exam: -NA

Teacher's Assessment/Term Work: 25 Marks

Practical: 2 Hrs /week

Course Objectives:

- 1. Understand the R Programming Language.
- 2. Exposure on visualizing data science problems.
- 3. Understand the classification and Regression Model.

Contents

No of Particles to be performed not less than 10

1. Introduction to R Programming and Study of basic Syntax in R

- 2. R as a Calculator application:
 - a. Using with and without R objects on console
 - b. Using mathematical functions on console
 - c. Write an R script, to create R objects for calculator application and save in a Specified location in disk.
- 3. Descriptive Statistics In R
 - a. Write an R script to find basic descriptive statistics using summary, str, quartile function
 - b. Write an R script to find subset of dataset by using subset (), aggregate () functions on sample dataset
- 4. Reading and Writing Different Types of Datasets
 - a. Reading different types of data sets (.txt, .csv) from Web and disk and writing in file in specific disk location.

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page 19 of 48

- b. Reading Excel data sheet in R.
- c. Reading XML dataset in R.
- 5. Visualizations
 - a. Find the data distributions using box and scatter plot.
 - b. Find the outliers using plot.
 - c. Plot the histogram, bar chart and pie chart on sample data

Study and implementation of various control structures in R and calculate mean mode median for a dataset

- 6. Correlation and Covariance
 - a. Find the correlation matrix.
 - b. Find the outliers using plot.
 - c. Plot the correlation plot on dataset and visualize giving an overview of relationships among data.
- 7. Regression Model

Import a data from web storage. Name the dataset and now do Linear/Logistic Regression to find out relation between variables that are affecting the admission of a student in an institute based on his or her entrance score

- 8. Classification Model
 - a. Install relevant package for classification.
 - b. Choose classifier for classification problem.
 - c. Evaluate the performance of classifier.
- 9. Clustering Model
 - a. Clustering algorithms for unsupervised classification.
 - b. Plot the cluster data using R visualizations.
- 10. Mini Project

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page 20 of 48

Master Copy

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of Syllabus of M. Tech. (Manufacturing Engineering) Semester-I

Course Code:MFG112

Course: Lab-II:-Master CAM

Credits: 0-0-1 (1) Term work: 25 Marks

Teaching Scheme:

Practical: 02 Hr/week

Course Content:

The lab work consists of the assignments/experiments related to

Lathe:

2D Geometric Modelling, File conversions (Data conversions),tool paths for Turning, Facing, Grove cutting, drilling, taping and tool paths verification and CNC Part Program generation. **Mill:**

2D and 3D Geometric Modelling, Tool paths for 2D machining like countering, pocketing, Island pocketing, Drilling, Plane milling,

Surface Modelling 3D surfaces (Coons, Ruled, Revolved, Tabulated etc), Tool paths for 3D machining, Surface machining, Verification and CNC part program generation.

Chairman Board of Studies

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute) Page **21** of **48**

Master Copy

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech. (Manufacturing Engineering) Semester-I

Course Code:MFG113

Course : Lab-III[MATLAB]

Credits: 0-0-1 (1) Term work: 25 Marks

Teaching Scheme:

Practical: 02 Hr/week

Course Content:

The lab work consists of the assignments/experiments related to

Introduction to MATLAB Software

- 1. MATLAB window: Command window, Workspace, Command history, setting directory, Working with the MATLAB user interface
- 2. Basic commands, Assigning variables, Operations with variables
- 3. Data Types: Character and string, Arrays and vectors, Column vectors, Row vectors
- 4. Basic Mathematics: BODMAS Rules, Arithmetic operations, Operators and special characters,
 - Mathematical and logical operators, Solving arithmetic equations
- 5. Operations on matrix: Crating rows and columns Matrix, Matrix operations, Finding transpose, determinant and inverse, Solving matrix
- 6. Other operations: Trigonometric functions, Complex numbers, fractions, Real numbers, Complex numbers
- 7. Plots: Plotting vector and matrix data, Plot labelling, curve labelling and editing, 2D plots: Basic Plotting Functions, Creating a Plot, Plotting Multiple Data Sets in One Graph, Specifying Line Styles and Colours, Graphing Imaginary and Complex Data, Figure Windows, Displaying Multiple Plots in One Figure, Controlling the Axes

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **22** of **48**

Master Copy

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech. (Manufacturing Engineering) Semester-I

Course Code: MFG114	Credits: 0-0-2 (2)
Course: Seminar	Pr-Oral : 50 Marks
Teaching Scheme:	
Practical: 04 Hr/week	

Objective:

To train students in identification, analysis, and prepare report of it.

The course content of seminar shall be from emerging / thrust areas, topics of current relevance having research aspects or shall be based on industrial visits.

Students can also choose live problems from manufacturing organizations as their seminar topic.

At the end of the semester, the students should submit a report and appear for End Semester **Examination**.

End Semester Examination will be assessed by Examiner appointed by University and internal guide. Seminar will have end Semester examination of 50 marks.

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **23** of **48**

U

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

and any second second	Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
	(Faculty of Science & Technology)			
	Syllabus of M. Tech. (Manufacturing Engineering) Semester-II			
Course Code:MFG141 Credits: 3-1-0 (4)				
Course: Advar	nced Optimization Techniques	Mid Semester Examination-I: 15 Marks		
Teaching Sch	eme:	Mid Semester Examination-II: 15 Marks		
Lecture: 3 Hr	s/week	Teacher Assessment: 20 Marks		
Tutorial: 1 Hr	/week	End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 02 Hrs		
	Introduction			
	Optimal Problem Formulation,	engineering optimizations Problems, Optimization		
	Algorithms			
Unit1		Igorithms: Optimality criteria, bracketing methods,		
	region elimination methods, point estimation methods, gradient base methods, root			
	finding using optimization techniques.			
		(06Hrs)		
	Multivariable optimization Alg			
Unit 2		hal search, direct search methods, gradient based		
0 2	methods.			
		(06Hrs)		
	Constrained Optimization Alg			
		sformation methods, Sensitivity Analysis, direct		
Unit 3		search for constrained minimization, linearized search techniques, feasible direction		
	method, generalized reduced gra	adient method, and gradient projection method. (06Hrs)		
	The Maria	(00113)		
	Fuzzy Logic	uzzy sets and membership functions, operations on		
Unit 4		rules, propositions, implications and inferences,		
		y logic controller design, some applications of fuzzy		
		,		

8 Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page 24 of 48

	logic.						
	logic.				(06Hrs)		
	~ .				(00113)		
		al Optimization Algorith					
Unit 5	Intege	er programming, geomet	tric programming	g, Genetic Algo	rithm, Simulated		
	annea	annealing, Global optimization, ant colony optimization.					
		(06Hrs)					
	Optin	nization in Operations R	lesearch				
	Linea	r Programming Problems	, simplex method	, artificial variabl	e technique, dual		
Unit 6	phase	e method, sensitivity analys	sis.				
					(06Hrs)		
References	Sr.		Γ				
References	No.	Title	Author	Publication	Edition		
					and partic		
	1.	Optimization for	Deb	PHI, New	2 nd Edition		
		Engineering Design	Kalyanmoy	Delhi			
	2.	Engineering	Rao S.S.	John Wiley,	3 rd Edition		
		Optimization		New Delhi			
	3.	Multi-Objective	Deb	John Wiley,	1 st Edition		
		Algorithms using	Kalyanmoy	New Delhi.			
		Evolutionay Algorithms					
	4.	Principles of Optimum	Paplambross P.	Cambridge	2 nd Edition		
		Design: Modelling and	Y. and Wilde	University			
		Computation	D. J.	Press, UK			
	5.	Optimization concepts	Ashok D	Cambridge	3 rd Edition		
		and Applications in	Belegundu	University			
		Engineering	Tirupathi R.	Press			
			Chandupatla				

(Y Chairman Board of Studies

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute) Page **25** of **48**

Master Copy

Ĩ

		arathwada University, Aurangabad			
	(Faculty of Science & Technology)				
	Syllabus of M. Tech. (Manufacturing Engineering) Semester-II				
Course Code: MFG142 Credits: 3-0-0 (3)					
Course: Green	Manufacturing	Mid Semester Examination-I: 15 Marks			
Teaching Sch	eme:	Mid Semester Examination-II: 15 Marks			
Lecture: 3 Hr	s/week	Teacher Assessment: 20 Marks			
		End Semester Examination: 50 Marks			
		End Semester Examination (Duration): 02 Hrs			
	Introduction to green process	es Environmental effects of design -selection of			
	natural friendly material -	Eco design - Environmental damage alternate			
Unit 1	biodegradable materials Emission less manufacturing- Industrial Ecology -				
	Pollution prevention – Reduction of toxic emission – design for recycle.				
		(06Hrs)			
	Primary and Secondary Pollut	ants, Automobile Pollutants, Industrial Pollution,			
	Ambient air quality Standards, Metrological aspects of air Pollution from				
	industry point of view.				
	Frequency and Sound Levels, Units of Noise based power radio, contours of				
Unit 2	Loudness. Effect of human, Environment, and properties, Natural and				
	Anthrogenic Noise Sources, Masking of sound, Types, Kinetics, Sources of noise,				
	Effects of noise-Occupational Health hazards, thermal Comforts.				
		(06Hrs)			
	Principles of sustainable oper	rations - Life cycle assessment manufacturing and			
	service activities - Influence of product design on operations - Process analysis -				
	Capacity management - Quality management - Inventory management - Just-In-				
Unit 3	Time systems - Resource efficient design - Consumerism and sustainable well-				
	being.				
		(06Hrs)			
Unit 4	Green supply Chains – Need	for Green Supply Chains - Implications of modern			
		Page 26 of 48			
	l l	rage 20 01 40			

airman Board of Studi

Master Copy

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

	supply	chain management –	The supply chain strat	egy – Ingredie	nts of green		
	supply chain strategy. Evaluating the impact of GSCM activities on sustainability						
	- Economic, Environmental and social impacts of GSCM Stages of GSCM -						
	performance measurement. (06Hrs)						
	Indian	Constitution and Env	vironmental Protection	– National Er	nvironmental		
	policie	es – Precautionary Pri	nciple and Polluter Pa	ys Principle –	Concept of		
Unit 5	absolu	te liability – multila	teral environmental ag	reements and	Protocols -		
	Montr	eal Protocol, Kyoto agr	eement, Rio declaration	 Environment 	al Protection		
	Act, V	Vater (P&CP) Act, Air ((P&CP) Act.				
					(06Hrs)		
	Recyc	clable materials, biop	lastics, tapping into r	enewable ener	gy sources,		
	embra	cing digital manufactu	ring, Application of AI	in manufactur	ing, AR and		
Unit 6		VR (Augmented reality and virtual reality), Basics of Environmental accounting					
		nal, global and corporate			•		
	(06Hrs)						
References	Sr.						
	No.	Title	Author	Publication	Edition		
				Prentice			
	1.	Industrial Ecology	Gradel.T.E. and B.R.	Hall -2010			
	1.	maustrial Beeregy	Allenby	11011 - 2010			
		World Commission					
		on Environment and		Oxford			
		Development			1 st Edition		
	2.	(WCED), Our		University	1 Edition		
		Common Future		Press, 2005			
	3.	Costing the Earth:	Frances Cairncross	Harvard			
		The Challenge for		Business			

N

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page **27** of **48**

		Governments, the		School	
		Opportunities for		Press -1993	
		Business			
		Environmental		Wiley	
	4.	Pollution Control	Rao CS	Eastern	and put
		Engineering	Rau CS	Ltd., New	2 nd Edition
		Engineering		Delhi, 2006.	
		Industrial noise		Marcel	
	5.	control,	Lewis H Bell and	Decker,	and —
		Fundamentals and	Douglas H Bell	1994.	2 nd Edition
		applications			
		Environmental		Wilson	
	6.	Accounting: Energy	Odum, H.T.	Wiley,	
	0.	and Environmental		U.S.A.	
		Decision Making			
			Charisios		
		Green Supply Chain	Achillas, Dionysis D.		
	7.	Management	Bochtis, Dimitrios		
		in an agement	Aidonis, Dimitris		
			Folinas		
			Norman J. Vig -		
		Environmental	Carleton College,		
	8.	Policy New	Minnesota, Michael E.		
		Directions for the	Kraft - University of	Sage	1.1th p
		Twenty-First	Wisconsin, Green	Publication	11 th Edition
		Century	Bay, USA, Barry G.		
		Contary	Rabe - University of		
			Michigan, USA		

N Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **28** of **48**

Master Copy

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (Faculty of Science & Technology) Syllabus of M. Tech. (Manufacturing Engineering), Semester-II Credits: 3-0-0 (3) Course Code:MFG143 Mid Semester Examination-I: 15 Marks Course Title: Characterization of Mid Semester Examination-II: 15 Marks Materials Teacher Assessment: 20 Marks Teaching Scheme: End Semester Examination: 50 Marks Theory: 3 Hrs./week End Semester Examination (Duration): 02 Hrs 1. To study basic description of a range of common characterization techniques Course and analysis of results. 2. To provide a thorough introduction to the principles of diffraction. Objectives 3. To understand the basics of surface texture and techniques to analyze texture. Importance of characterization studies in materials science - Applications in industry and research, review of materials science fundamentals - crystal structures, defects in crystal structure, structure and property correlation, structure sensitive/ Unit 1 insensitive properties. Introduction to Elemental composition techniques - AAS, AES. (06Hrs) Principles of image formation - brightness, contrast, resolution, depth of field, focus, aberrations (spherical, chromatic and astigmatism), remedial measures for aberrations, levels of characterization (macro, meso and micro). Unit 2 OM, PLOM. (04 Hrs)SEM - working principle and construction, advantages/ disadvantages as compared to OM, types of electron gun feature and comparison, beam-sample interaction, interaction volume concept, Imaging modes (secondary and backscattered), effect of Unit 3 spot size, apertures, accelerating voltage on SEM image. (08Hrs)

Chairman Board of Studies

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page 29 of 48

Contraction of the second s					
Elemental analysis techniques using SEM – WDS, EDS, EPMA, XRF.					
Unit 4	Introduction to Surface analysis methods – AES, XPS.				
					(08Hrs)
	XRD	- generation of X-r	ays, characteristic X-	ray spectrum, E	Bragg's Law,
Unit 5	diffra	ction methods - powde	er method, applications	s in crystal struc	ture, macro-
	textur	e and residual stress det	ermination.		
					(04Hrs)
	Thern	nal analysis techniqu	es – DSC, DMA,	DTA and TGA	. Chemical
Unit 6	chara	cterization – FTIR and F	Raman spectroscopy.		
					(06Hrs)
References	Sr.			Publication	Edition
	No.	Title	Author	Publication	Eution
		Introduction to		John Wiley &	
	1.	Materials	Yang Leng	Sons	1 st Edition
		Characterization		50115	
		Metallography:	George F, Vander	Mc Graw Hill	4 th Edition
	2.	Principle and practice	Voort	Inc.	- Luttion
		Fundamental of Light	Douglas B. Murphy, Michael W. Davidson	John Wiley &	
	3.	Microscopy and		Sons	2 nd Edition
		Electronic Imaging		5013	
		Elements of X-ray	B. D. Cullity and S.	Prentice Hall,	1 st Edition
	4.	Diffraction	R. Stock	Inc.	I Edition
		ASM Handbook		ASM	
	5.	Volume 10 Materials	R. E. Whan (Editor)	international,	2019
		Characterization		USA	Edition
		Differential Scanning	G. Hohne, W.F.	Springer	1 st Edition
	6.	Calorimetry	Hemminger		
		1	1		

N Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **30** of **48**

Master Copy

1

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

	Dr. Babasaheb Ambedkar Marathwada University, Aurangabad				
	(Faculty of Science & Technology)				
	Syllabus of M. Tech. (Manufacturing Engineering), Semester-II				
Course Code	Course Code:MFG144 Credits: 3-0-0 (3)				
Course: Theo	ory of Metal Forming	Mid Semester Examination-I: 15 Marks			
Teaching Scheme: Mid Semester Examination-II: 15 Marks		Mid Semester Examination-II: 15 Marks			
Lecture: 3 H	rs/week	Teacher Assessment: 20 Marks			
		End Semester Examination: 50 Marks			
		End Semester Examination (Duration): 02 Hrs			
	Stress-strain relations in elastic	and plastic deformation, Yield criterion for ductile			
	material. Relationship between	tensile and shear yield stresses. Introduction and			
Unit 1	Fundamentals of metal forming, Mechanics of metal working, Forming equipments,				
	Presses- (Mechanical and Hydraulic)				
		(06Hrs)			
	Theory of Plasticity: Mechanical behavior of Metals and alloys under plastic				
	deformation, Strain hardening hypothesis, Flow stress and flow curves, Material				
Unit 2	incompressibility. Introduction of super plastic metal forming, super plastic metal				
Unit 2	forming working principle, super plastic metal forming types, it's advantages and				
	applications.				
		(06Hrs)			
		on problem, Application of theory of plasticity and			
	solving metal forming problems using slab method, Upper and lower bound				
Unit 3	methods, slip line field theory, Effect of temperature and strain rate in metal				
	working.				
		(06Hrs)			
	Analysis of a) Rolling- Determin	nation of Rolling Pressure, Roll separating Force,			
Unit 4		r loss in bearing, Bending- Determination of work			
	load, Estimation of spring back. (Derivation and Numerical)			
		(06Hrs)			

S Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page **31** of **48**

	b) Forging-Forging of Strip and Disc c) Extrusion-Determination of Work load							
Unit 5	from stress analysis and Energy consideration, Determination of Power Loss.							
		vation and Numerical)						
		(06Hrs)						
	Analysis of metal forming process -Wire Drawing, Sheet metal forming processe							
		Deep Drawing, Stretch for						
Unit 6	1	l Forming Processes. (Der						
					(06Hrs)			
References	Sr.				Edition			
	No.	Title	Author	Publication	Edition			
	1.	Manufacturing Science	Ghosh and	East-West	2 nd Edition			
			Mallik	Private Limited				
	2.	Principal of Industrial	G. W. Rowe	CBS Publisher,	2 nd Edition			
		Metal working		2005				
		Processes	Ψ.					
	3.	Mechanical Metallurgy	George E.	McGraw Hill	3 rd Edition			
			Dieter	Higher				
				Education				
	4.	Metal	W F Hosford	Cambridge	4 th Edition			
		Formingmechanics and	and R M	University				
		Metallurgy	Caddel	Press, 2011				
	5.	Metal Forming:	Hill, R	Claredon Press,	1 st Edition			
		Processes and Analysis		1998				
	1							

N Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page **32** of **48**

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad				
(Faculty of Science & Technology)				
	Syllabus of M. Tech (Manufact	turing Engineering), Semester- II		
Course Code:N	AFG161	Credits: 3-0-0 (3)		
Course Title: I	ntelligent Industrial Systems	Mid Semester Examination-I: 15 Marks		
(Professional H	Elective-II)	Mid Semester Examination-II: 15 Marks		
Teaching Sch	eme:	Teacher Assessment: 20 Marks		
Theory: 3 Hrs	s./week	End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 02 Hrs		
Course	1. Understand the importance of	f Artificial Intelligence in Manufacturing systems.		
Objectives	2. Understand the importance	of Knowledge Based Systems in Manufacturing		
	systems.			
	3. Developing the capability o	f applying Intelligent Systems in Manufacturing		
	Systems.			
	4. Assess the performance of M	lanufacturing Systems		
	5. Develop a systematic approach for design and implementation of			
	Manufacturing Systems.			
	6. Suggest new procedures to improve the productivity of existing manufacturing			
	systems.			
	Computer Integrated Manufacturing Systems Structure and functional areas of			
		, CAM, CAQC, ASRS. Advantages of CIM.		
		Systems – MAP/TOP, OSI Model, Data		
Unit 1	Redundancy, Top- down and	Bottom-up Approach, Volume of Information.		
	Intelligent Manufacturing Syste	m Components, System Architecture and Data		
Flow, System Operation.				
		(06Hrs)		
	Components of Knowledge Bas	ed Systems - Basic Components of Knowledge		
Unit 2	Based Systems, Knowledge	Representation, Comparison of Knowledge		
	Representation Schemes, Interfer	rence Engine, Knowledge Acquisition, Clustering.		

X Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page 33 of 48

	Applic	ations in Manufacturing Sy	stems.		
					(06Hrs)
	Machi	ne Learning – Concept o	of Artificial Intel	lligence, Concept	
		ial Neural Networks – B		-	
Unit 3		Networks, Applications in		-,	,,
			B.		
					(06Hrs)
	Auton	ated Process Planning –	Variant Approach	n, Generative App	proach, Exper
		ns for Process Planning, F			
		ledge Based System for I			
Unit 4	systen	n design. Equipment Sel	ection Problem,	Modeling the	Manufacturin
	Equip	ment Selection Problem, P	roblem Solving a	pproach in KBSE	S, Structure o
	the KI	RSES.			
					(06Hrs
	Group Technology: Models and Algorithms Visual Method, Coding Method,				
	Cluster Analysis Method, Matrix Formation - Similarity Coefficient Method,				
Unit 5	Sorting-based Algorithms, Bond Energy Algorithm, Cost Based method, Cluster				
	Identification Method, Extended CI Method.				
	(06Hrs)				
	Knowledge Based Group Technology - Group Technology in Automated				
Unit 6	Manufacturing System. Structure of Knowledge based system for group technology				
	(KBST) — Data Base, Knowledge Base, Clustering Algorithm.				
					(06Hr
References	Sr.	Title	Author	Publication	Edition
	No.			rubication	Edition
	1.	Intelligent	Andrew	Prentice Hall.	
		Manufacturing Systems	Kusiak		
	2.	Artificial Neural	Yagna	Prentice Hall.	12 th Edition
	1				Page 34 of 48

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

	Networks	Narayana		
3	Automation, Production Systems and CIM	Groover M.P.	Prentice Hall.	3 rd Edition
4	Design and	Hamid R	Prentice Hall.	1 st Edition
	Implementation of	Parsaei and		
	Intelligent	Mohammad		
	Manufacturing Systems	Jamshidi		
5	Introduction to Artificial	Jacek M.	JAICO	1 st Edition
	Neural Systems	Zurada	Publishing	
			House Ed	

N

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **35** of **48**

0

Unit 2

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech (Manufacturing Engineering), Semester- II

Course Code:MFG162	Credits: 3-0-0 (3)
Course: Mechatronics and	Mid Semester Examination-I: 15 Marks
Robotics(Professional Elective-II)	Mid Semester Examination-II: 15 Marks
Teaching Scheme:	Teacher Assessment: 20 Marks
Theory: 3 Hrs/week	End Semester Examination: 50 Marks
Tutorial: 0 Hr/week	End Semester Examination (Duration): 02Hrs

	Introduction to Mechatronics: Definition and Approach of Mechatronics,
	Measurement and Control Systems, Sensors and Transducers: Performance
	Terminology, Displacement, Velocity, Position, Proximity, Force, Fluid Pressure,
Unit 1	Liquid Level, Temperature, Light Sensors, Procedure for Selection; Microprocessor
Unit I	Based Controllers and Mechatronics Approach; Signal Conditioning: Op Amp,
	Protection, Digital Signals, Multiplexes and Digital Signal Processing, Pulse
	Modulation.
	(06Hrs)

 Drives and Controllers: Actuation Systems, Direction control valves, Pressure and Process Control Valve, Pneumatic and Hydraulic Systems; Electrical Actuation System: Mechanical Switches, Solid State Switches, Solenoid, DC/AC Motors, Stepper Motors; Microprocessor and its Application: Architecture of Microprocessor 8085, Instruction Set, Embedding a Microprocessor into a Mechatronics System.

 Unit 3
 Introduction to robotics and Kinematics: Robotics configuration, Need and Classifications of Robots, Characteristics of robot, Robot Peripherals, Sensors, Robot Kinematics, Homogeneous Transformations, Forward & Inverse Kinematics. (06Hrs)

 Unit 4
 Robot Control Units: Motion Controls. Problems of Dynamics, Differential

0 Chairman Board of Studies **Mechanical Engineering** MIT Aurangabad

(An Autonomous Institute)

Master Copy

Page 36 of 48

	Relationships, Motion Trajectories, , Dynamics of Robot Control of Single &				
	Multiple Link Robot, Static Force Analysis.				
					(06Hrs)
	Robot	Programming And	Machine Visior	: Robot Programm	ming: Different
		ages Expert Systems,			
Unit 5		sis, Application of Artifi			
	-				(06Hrs)
	Robot	Applications in N	Aanufacturing:	Material Transfer	& Machine
	Loadii	ng/Unloading, Processin	g Operations, In	spection, Automatio	on, Robot Cell
Unit 6	1	n, Control, Recent Dev			
	Robot				
					(06Hrs)
References	Sr.	T:41-	Author	Publication	Edition
	No.	Title	Author	Fublication	Edition
			Bolton, W.	Tata Mcgraw-	1St D 1't'
	1.	Mechatronics		Hill, New Delhi	1 st Edition
		Introduction to	Shetty, D. and	Tata McGraw	
	2.	Mechatronics	Richard, A.K.	Hill, 2003	1 st Edition
		Mechatronics System	Mahalik, N.	PWS Pub.	
	3.	Design		Boston. 1997	2 nd Edition
		Principles, Concept	Bolton, W.	Tata McGraw.	1 st Edition
	4.	and Applications: Mechatronics		2003	i Edition
			Merzouki R.,		
		Mechatronics: A	Samantaray A.		
	5.	Multidisciplinary	K., Pathak	Prentice Hall.	4 th Edition
		Approach	P.M.,	2009	
			Bouamama B.		
	1				

B Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **37** of **48**

Master Copy

			Ould		
	6.	Intelligent Mechatronic Systems: Modeling, Control and Diagnosis	Springer 2013 Mechatronics, Intl. J	Pergamon Press	2
	7.	Robotics: Fundamental concepts and analysis	A. Ghosal	Oxford university press, 2006	1 st Edition
	8.	Industrial Robotics	M P Groover	Pearson Edu, 2008	1 st Edition
	9.	Robotics and Control	R K Mittal & I J Nagrath	Tata McGraw- Hill ,2003	
	10.	Robotics: Control, sensing, vision and intelligence	K Fu, R Gonzalez, and C S G Lee	McGraw Hill, 1987	2 nd Edition
	11.	Robot Dynamics & Control	Mark W. Spong and M. Vidyasagar	John Wiley & Sons (ASIA) Pte Ltd, 1989	1 st Edition
j	12.	Automation, Production systems and Computer Integrated Manufacturing	M P Groover	Prentice Hall India, 1987	4 th Edition

n Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **38** of **48**

Master Copy

	Dr. Babasaheb Ambedkar Marathwada University, Aurangabad				
	(Faculty of Science & Technology)				
	Syllabus of M. Tech (Manufacturing Engineering), Semester- II Course Code:MFG163 Credits:3-0-0 (3)				
			Mid Semester Examination-I: 15 Marks		
		Element Method(Professional			
	ective-II)		Mid Semester Examination-II: 15 Marks		
	aching Sch		Teacher Assessment: 20 Marks		
Le	cture: 3 H	rs/week	End Semester Examination: 50 Marks		
			End Semester Examination (Duration): 02Hrs		
			e Method and Finite Element Method, Advantages		
		and disadvantages, Mathematica	al formulation of FEM, Variational (Rayleigh-Ritz)		
	Unit 1	Method, Potential Energy M	ethod, Weighted Residual (Galerkin) Approach,		
		Weighted Residual (Least Squa	res) Approach.		
			(06Hrs)		
		Shape functions, Natural co-ore	dinate system, Element and global stiffness matrix,		
	Unit 2	Boundary conditions Errors, Convergence and patch test, Higher order elements.			
			(06Hrs)		
\vdash		Applications: problems of stru	ctural mechanics and solid mechanics, Plane stress		
	Unit 3	and plane strain problem, 3-D p	roblems. Torsion, bending of plates and shells,		
			(06Hrs)		
-		FE formulation for vibration, he	eat transfer, and fluid flow problems.		
	Unit 4	(06Hrs)			
\vdash					
			materially non-linear bending of straight beams and		
		elastic plates problems, assoc	iated flowcharts and computer programming, Data		
	Unit 5		on through computer graphics, Numerical techniques,		
		3D problems.			
			(06Hrs)		
1					

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page **39** of **48**

Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute)

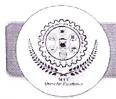
Unit 6	FEM an essential components of CAD, Use of commercial FEM packages, ANSYS Software and MATLAB Programs for Finite Element Analysis, Comparison with conventional analysis.				
References	Sr.	Title			(06Hrs)
	No.	Inte	Author	Publication	Edition
	1.	Finite Element Analysis	<u>O C K i I</u>		
	1.	Time Element Analysis	C.S.Krishnamo orty	Tata McGraw-Hill	1 st Edition
	2.	Computer Analysis of	D. Maity	I.K. International	3 rd Edition
		Framed Structures		Pvt. Ltd. New	
				Delhi	
	3.	Fundamentals of Finite	David V.	McGraw Hill	3 rd Edition
		Element Analysis,	Hutton,		
	4.	Introduction to the	Erik G.	Wiley, 2005	1 st Edition
		Finite Element Method:	Thompson		
		Theory, Programming			
		and Applications			
The second se	5.	Introduction to Finite	John Wiley H.	NewYork,	1 st Edition
		Element Analysis -	C. Martin and	McGraw-Hill	
		Theory and Application	G. F. Carey		
Γ	6.	Finite Element	K. J.Bathe,	Prentice-Hall of	2 nd Edition
		Procedures,		India, New Delhi,	
				India	
	7.	Matrix and Finite	M.	Ane Books pvt	2 nd Edition
		Element Analysis of Structure	Mukhopadhyay	Ltd.	

1 Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

.

Master Copy

Page 40 of 48



8.	The Finite Element	Zienkiewicz	McGraw Hill,	5 th Edition
	Method in Structural	and Y.K.	London	
	and Soild Mechanics,	Cheung,		
9.	A History of Modern	P.E. Ceruzzi,	The MIT Press,	1 st Edition
	Computing,		Cambridge, MA,	
			1998.	
10.	Finite Element Analysis	Wiley S.S.	Elsevier	1 st Edition
		Rao,	Butterworth-	ò
			Heinemann	

Chairman Beard of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page **41** of **48**

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech (Manufacturing Engineering), Semester- II

Course Code:MFG151Credits: 0-0-1 (1)Course: Lab IV: Advanced OptimizationTerm-work: 25 MarksTechniquesTeaching Scheme:Practical: 2 Hrs/weekImage: Image: Im

The lab work consists of the assignments/experiments related to The lab experiments shall be conducted to solve the numerical on

- LPP using software LINGO/LINDO/MS Excel/PYTHON
- Single variable and multi variables with constrained and unconstrained optimization using MATLAB/PYTHON
- Non-traditional optimization with MATLAB/PYTHON

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page 42 of 48

Master Copy

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech. (Manufacturing Engineering), Semester-II

Course Code: MFG152	Credits: 0-0-1 (1)				
Course: LAB-V Characterization of Materials	Term Work: 25 Marks				
Teaching Scheme:					
Practical: 2 Hr./week					
Course Content:					
The lab work consists of the assignments/experiments related to					
1. Sample preparation techniques for microscopy.					
2. Interaction volume concept of electron beam.					
3. Case study on microstructure analysis by OM, SEM and TEM.					
4. Case study on elemental analysis by XR	D, WDS and EDS.				

- 5. Case study on surface analysis.
- 6. FTIR and DSC analysis of polymers.

6 Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **43** of **48**

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of Syllabus of M. Tech. (Manufacturing Engineering), Semester-II

Course Code:MFG153	Credits: 0-0-1 (1)
Course: Lab-VI	Term work: 25 Marks
[Advanced MATLAB Programming]	
Teaching Scheme:	
Practical: 02 Hr/week	

Course Content:

۱

The lab work consists of the assignments/experiments related to

Programming in MATLAB Software.

- 1. GUI Design: Introduction of Graphical User Interface, GUI Function Property, GUI Component Design, GUI Container, Writing the code of GUI Call back.
- 2. MATLAB Programming: Automating commands with scripts, Writing programs with logic and flow control, Writing functions, Control statement Programming, Conditional Statement Programming, Examples.
- 3. Loops and Conditional Statements: Control Flow Conditional Control if, else, switch Loop Control for, while, continue, break Program Termination return
- 4. Functions: Writing user defined functions, Built in Function, Function calling, Return Value, Types of Functions, Global Variables
- 5. MATLAB Toolbox: Optimization Toolbox, Fuzzy logic Toolbox, Global Optimization Toolbox, Neural Network Toolbox, Statistics and Machine Learning Tool Box.
- 6. Introduction to Simulink

Chairman Board of Studies Mechanical Engineering

MIT Aurangabad (An Autonomous Institute)

Page 44 of 48

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech. (Manufacturing Engineering), Semester-II

Course Code:MFG154Credits: 0-0-2 (2)Course: Mini ProjectPractical /Oral : 50 MarksTeaching Scheme:Practical: 4 Hr./week

Course Content:

A group of students or individual students are required to choose a topic of interest. To train students in identification, analysis, finding solutions and execution of live engineering and managerial problems. The course content of the mini project shall be from emerging / thrust areas, topics of current relevance having research aspects or shall be based on industrial visits.

Students can also choose live problems from manufacturing organizations as their mini project.

At the end of the semester, the students should submit a report and appear for End Semester Examination.

End Semester Examination will be assessed by Examiner appointed by University and internal guide. Mini Project will have end Semester examination of 50 marks.

Chairman Board of Studies

Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **45** of **48**

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (Faculty of Science & Technology)

Syllabus of M. Tech.(Manufacturing Engineering), Semester-III

Course Code:MFG201	Credits:3-0-0 (3)
Course: MOOC Course	End Semester Exam:100Marks
Teaching Scheme:	
Online Course	
(Minimum12Weeks)	

It is mandatory for the student to complete one MOOC course related to the program of study. The student will have to complete the MOOC course which will be available on the SWAYAM portal (Free online education portal). Registered MOOC courses should not have similar or overlapping content to that of the regular courses in the curriculum of the program. The credits can be given to the students after successful completion of the MOOC course of 12 weeks or more.

The credits will be transferred by the evaluation in terms of assignments or examinations or vivavoce. In case the student is unable to clear MOOC Course examination, the student will have to appear for an Institute-level examination for the respective MOOC course.

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Master Copy

Page 46 of 48

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (Faculty of Science & Technology) Syllabus of M. Tech.(Manufacturing Engineering), Semester-III

•	
CourseCode:MFG211	Credits:0-0-9 (9)
Course: Dissertation-I	Term-work:50Marks
Teaching Scheme:	Vivavoce:100Marks
Practical: 18Hr/week	

The dissertation shall consist of a report on any research work done by the candidate or a comprehensive and critical review of any recent development in the subject or detailed report of the project work consisting of a design and /or development work that the candidate has executed. The report must include comprehensive literature work on the topic selected for dissertation.

Term-work: The dissertation part-I will be in the form of seminar report on the project work being carried out by the candidate and will be assessed by two examiners appointed by the university, one of whom will be the guide and other will be a senior faculty member from the department.

Viva Voce: The dissertation part-I will be in the form of seminar report on the project work being carried out by the candidate and will be assessed by two examiners appointed by the university, one of whom will be the guide and other will be an external examiner.

Chairman Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page **47** of **48**

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad
(Faculty of Science & Technology)

Syllabus of M. Tech.(Manufacturing Engineering), Semester-V

Course Code:MFG251	Credits:0-0-12 (12)
Course: Dissertation-II	Term-work:100Marks
Teaching Scheme:	Vivavoce:100Marks
Practical: 24Hr/week	

The dissertation part-II will be in continuation of dissertation part-I and shall consists of a report on the research work done by the candidate or a comprehensive and critical review of any recent development in the subject or detailed report of the project work consisting of a design and /or development work that the candidate has executed. The examinee shall submit the dissertation in triplicate to the head of the institution duly certified by the guide and the concerned head of the department and the Principal that the work has been satisfactorily completed.

Term-work:

The dissertation will be assessed by two examiners appointed by the university, one of whom will be the guide and other will be a senior faculty member from the department.

Viva-Voce:

It shall be consists of a defense presented by the examinee on his research work in the presence of the examiners appointed by the university, one of whom will be the guide and other will be an external examiner.

Chairman-Board of Studies Mechanical Engineering MIT Aurangabad (An Autonomous Institute)

Page 48 of 48